are

28. Carbon and its Compounds

- Diamond has a three-dimensional network of covalently bonded carbon atom. It is hard and colourless. It has high melting and boiling point and is a good conductor of heat but poor conductor of electricity.
- Graphite is soft, black, and slippery in nature and has a layered structure. It is a good conductor of electricity.
- Fullerenes contain carbon atoms arranged in closed structures similar to football.
- Charcoal, coke and carbon black are microcrystalline forms of carbon.
- The compounds of carbon can be classified as organic and inorganic.
- Carbon monoxide and carbon dioxide are two important inorganic compounds of carbon.

Build Your Understanding

Carbon can form long chains of carbon atoms. This unique property of forming long chains is known as **catenation** Allotrops of carbon

carbon multiple bonds.

different structure.

Carbon show three allotropic forms

• Organic compounds of carbon

• Hydrocarbons are classified as saturated and

unsaturated. The saturated hydrocarbons

contain carbon-carbon single bonds whereas

the unsaturated hydrocarbons contain carbon-

Isomers have same molecular formula but

• Some simple functional groups include halo-,

• Compounds containing the above functional

groups exhibit characteristic properties and

hydroxyl-, carbonyl, carboxylic acid etc.

have important uses in our daily life.

hydrocarbons and their derivatives.

- Diamond
- Graphite
- Fullerens

Diamond

- High density 3.51 gcm⁻³
- M.P. 3500°C
- Do not conduct electricity but good conductor of heat

Uses

- For cutting and grinding hard material (glass)
- For making Jewellery
- Rock drilling

Graphite

- Density 2.2 gcm–3
- M.P. 3700°C (in vacuum)
- Good conductor of electricity

Graphite $\xrightarrow{\text{High atm Pressure}}$ Diamond

Uses

- used as lubricant in machines
- making electrodes in dry cells and electric arcs
- making pencil lead

Fullerens

Fullerens have closed structure like foodball so it is also known as Buckminister fullerens C_{60}

Vapourized carbon $\xrightarrow{\text{Condensed}}$ Fullerences

Hydrocarbons

Contain carbon and hydrogen only

Aliphatic hydrocarbons: Derived from the Greek word aleiphar meaning fat. They are derived from fat.

Acyclic: strairght chain

Cyclic: form rings of carbon atoms

$$CH_2$$

 $CH_2 - CH_2$

Aliphatic can be divided into: saturated and unsaturated hydrocarbons: Saturated hydrocarbon single bond in unsaturated multiple bonds (double and triple bonds)

IUPAC Nomenclature

For IUPAC naming, we must have idea about word root of carbon skeleton

No. of Carbon atom	Word root	No. of Carbon atom	Word root
1	meth	5	pent
2	eth	6	hex
3	prop	7	hept
4	but	8	oct

Rules

1. Alkane (CH₄) Word root + ane \longrightarrow meth + ane \longrightarrow Methane

- 2. Alkene (C₂H₄) Word root + ene \longrightarrow eth + ene \longrightarrow ethene
- 3. Alkyne (C_2H_2)

Word root + yne \longrightarrow eth + yne \longrightarrow ethyne CH₃OH \rightarrow Methane \rightarrow replace 'e' by ol \rightarrow Methanol

 $C_2H_5OH \rightarrow E$ thane \rightarrow replace 'e' by ol \rightarrow Ethanol

Alcohols: Synthesis of acetic acid, additive petrol, spirit

Aldehyde and ketones: As solvent, polish removes

Carboxylic acid: Ascorbic acid vitamin C citrus fruits.

4. Ketone

For example O

$$\|$$

 $CH_3 - C - CH_3$

Propane \rightarrow replace 'e' by one \rightarrow propanone

Carboxylic Acid.
 For example CH₃COOH

Ethane \rightarrow replace 'e' by oic acid \rightarrow ethanoic acid

Functional groups

Functional groups is an atom or a group of atoms which is responsible for characteristic properties of a compound.

	J
Ethyl ethanoate	
Ethanoic Acid	
Propanone	
Etnanai	

IUPAC Name

Ethene

Ethyne

Methanol

Ethanal

Functional

group

-C = C -

 $-C \equiv C -$

- OH

O ∥

-С-Н

0 || - C --

0

- ["] – OH

-C-O-

Stretch Yourself

- 1. Methyl alcohol to harmful but ethylalcohol is not why?
- 2. Name the property of diamond which makes it brilliant when cut and polished.
- 3. Suppose in nature tetravalent of carbon is lost. What will happen then?

Test Yourself

General formula

 C_nH_{2n}

 C_nH_{2n-2}

R — OH

0

R - C - H

0 ||

 $R - \ddot{C} - R$

 $R - \ddot{C} - OH$

R - C - OR

Class

alkene

alkyne

alcohols

aldehydes

ketones

esters

carboxylic acids

1. Why diamond is used for cutting glass?

Example

 $H_2C = CH_2$

 $HC \equiv CH$

CH₃OH

CH₃CHO

0 $CH_3 - C - CH_3$

CH₃COOH

CH₃COOC₂H₅

- 2. Explain the tetracovalency of carbon.
- 3. Carbon has a tendency to form long chain compounds. Why?
- 4. Write down possible isomers of C_4H_{10} .
- 5. Write down the IUPAC names of the following

(i)
$$CH_3 - CH = CH_2$$

(ii)
$$CH_3$$

 $|$
 $CH_3 - CH - CH_3$
 O
 $|$
(iii) $CH_3 - C - CH_3$
(iv) HCHO

(v) $CH_3 - C \equiv C - H$