National Institute of Open Schooling
 Senior Secondary Course: Mathematics
 Lesson 8: Complex Numbers
 Worksheet-8

1. Write any three complex numbers and find its complex conjugates.
2. Find the modules of the complex number
$Z=2+3 i$. Also find the modules of $-Z$ and \bar{Z}. Observe the relationship among the modules of $Z,-Z$ and \bar{Z}.
3. By taking any two complex numbers Z_{1} and Z_{2} verify that $\left|Z_{1}+Z_{2}\right| \leq\left|Z_{1}\right|+\left|Z_{2}\right|$
4. If Z_{1} and Z_{2} be the two complex numbers, show that addition of two complex numbers will be a complex number and addition of complex numbers is commutative.
5. By taking and three complex numbers Z_{1}, Z_{2} and Z_{3}, verify that

$$
Z_{1}\left(Z_{2}+Z_{3}\right)=Z_{1} \cdot Z_{2}+Z_{1} \cdot Z_{3}
$$

6. If $(\cos \theta-i \sin \theta)^{2}=x-i y$, prove that $x^{2}+y^{2}=1$
7. If $a+i b=\frac{c+i}{c-i}$, where ' C ' is a real number, prove that $\frac{a}{b}=\frac{C^{2}-1}{2 c}$
8. Find the square root of $7+24 i$
9. Find the conjugate of the following complex number.
(i) $\frac{1+i}{1-i}$
(ii) $\frac{(1+i)^{2}}{3-i}$
10. Express $5 i^{3}+7 i^{20}-3 i^{2}$ in the form of $a+b i$
