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MODULE - 3
States of Matter

5

THE GASEOUS AND LIQUID
STATE

We know that matter exist in three* different states namely solid, liquid and gas.
The most familiar example to show these different states of matter is water. Water
exists as a solid (ice), a liquid (water) and a gas (steam) under different conditions
of temperture and pressure. The difference between these three states of matter
is due to the difference  in their intermolecular distances and intermolecular forces.
In addition to these, temperture and pressure also play an important role in deciding
the states of matter.

In this lesson we shall first discuss the differences in properties of the solid, liquid
and gaseous state and the factors due to which these differences arise. We shall
also study the effect of pressure and temperature on the volume of the given
amount of gas. These are governed by the gas laws namely Boyles’ law, Charles’
law and Avogadros’ law.

You are familiar with gases, liquids and solids in your daily life. You are aware
that water can exist as a liquid, a solid (ice) or as a gas (vapour). These are called
three states of matter. The properties of gaseous state can be explained in terms
of large separation of molecules and very weak intermolecular forces. In this
lesson, we shall also study about the intermolecular forces in liquids and see how
their properties can be explained in terms of these forces.

OBJECTIVES

After reading this lesson, you will be able to:

differentiate between the three states of matter - solid, liquid and gas;

* There is fourth state of matter called Plasma. In this state matter exists as ionised gas. This
occur at very high temperature. For example matter in the sun is in the Plasma State.
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describe various intermolecular interactions;

list the characteristic properties of gases;

state the gas laws (Boyle’s law, Charle’s law, Gay Lussac's law and Avogadro’s
law) and express these mathematically;

draw the p-V, p-1/V, p-pV and V-T graphs;

interpret the effect of temperature and pressure on the volume of a gas from
the graph;

derive the ideal gas equation from the gas laws;

state the Dalton’s law of partial pressure and explain its significance;

state Graham’s law of diffusion;

explain the role of Gay Lussac's law of combining volumes and Avogtadso's
law in developing the concept of molecule;

state the postulates of Kinetic Molecular Theory of gases;

explain the Maxwell’s distribution of velocities; and effect of temperature
and molar mass of gas on it.

differentiate between u
rms

, u
mp

 and u
av

;

explain the deviation of real gases from ideal behaviour in term of
compressibility factor;

state the van der Waal's equation and explain the significance of van der Waals
constants and

explain the liquifaction of gases with the help of Andrews curves.

explain the properties of liquids in terms of their structure (molecular
arrangement and intermolecular forces);

differentiate between evaporation and boiling;

define vapour pressure of a liquid and correlate it with its boiling point;

define surface tension and explain the effect of various factors on it;

explain the consequences of surface tension and

define viscosity of a liquid and correlate it with intermolecular forces.

5.1 THE THREE STATES OF MATTER

At any given conditions of temperature and pressure, matter exists in one of the
three states namely solid, liquid and gas. The characteristic properties of solid,
liquid and gaseous state are listed in Table 5.1.
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Table 5.1 : Properties of different states of matter

Property Solid Liquid Gas

Shape Definite Indefinite; takes up the Indefinite
shape of the vessel.

Volume Definite Definite Indefinite (fills the
container completely)

Density High Less than solids but Low
much higher than gases.

Compressibility Incompressible largely incompressible Highly compressible

The different characteristics of the three states of matter as listed above depend
upon the relative closeness of particles that make up the substance. In solid state,
the particles are held close together in a regular pattern by strong intermolecular
forces. In liquid state, intermolecular forces are weak as compared to solid state
hence the particles are less tightly held and allow them to move away from each
other. In the gaseous state, the molecules are farthest apart as compared to solid
and liquid states and the intermolecular forces are negligible so the particles move
randomly. A simplified picture of particles in solid, liquid and gaseous states is
represented in Fig. 5.1.

Solid Liquid Gas

(a) (b) (c)

Fig. 5.1 : A simplified picture of particles in solid, liquid and gaseous state

5.2 INTERMOLECULAR INTERACTIONS
Intermolecular interactions are the interactions or forces that operate between
the constituent particles of a substance, which may be atoms, molecules or ions.
These forces are very weak as compared to intramolecular forces–the forces
that operate within a molecule i.e. covalent and ionic bonds. These forces,
though weak, are responsible for the existence of condensed phases, namely,
liquids and solids.

5.2.1 Types of Intermolecular Interactions

There are four types of intermolecular interactions or forces: (i) London forces;
(ii) Dipole – dipole forces; (iii) Dipole – induced dipole forces and (iv) Hydrogen
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bonding. Out of these four, the first three are collectively called van der Waals
forces. Hydrogen bonding is a type of strong dipole – dipole forces and is not
included in van der Waals forces. Let us now learn about these forces.

(i) London forces.

Normally we assume that electrons are evenly distributed around nucleus (Fig.
5.2(a)). However, since electrons constantly move around the nucleus, at a
particular instant, the distribution of electrons may become uneven around the
nucleus (Fig. 5.2 (b)) and result in generation of a dipole with a slight negative
charge on one side and an equal positive charge on the opposite side. Thus,
an ordinarily non-polar species like an atom of a noble gas like argon or neon
becomes a polar species for an instant. This instantaneous dipole would induce
dipoles in its neighbours. (Fig 5.3). These dipoles attract each other as their
oppositely charged poles are near each other. The very next instant of time, this
dipole disappears as the electronic distribution once again becomes symmetrical
in this particular atom or molecule. With this, all the induced dipoles also
disappear. However, a new instantaneous dipole appears in some other atom
or molecule which induces dipoles in its neighbours.

+ +�+ �–

Figure 5.2: Development of instantaneous dipole

+�+ �– +�+ �– +�+ �–

Induced
depole

Instantaneous
dipole

Induced
dipole

Fig. 5.3: Induced dipoles in neighbours of an atom or a molecule
with instantaneous dipole.

This phenomenon continues for ever. At any given instant, a large number of
such atoms or molecules distributed randomly develop instantaneous dipoles
which induce dipoles in their neighbours. This results in the presence of weak
interactions in the substance.

These forces are named after the Germany born physicist Fritz London. London
forces are the weakest of all intermolecular forces and operate at extremely short
distances. These are also called dispersion forces. These are the only forces
that are present in atoms or non-polar molecules and are responsible for the
existence of their condensed phases. These forces are present universally in all
types of molecules, polar or non-polar  and contribute majorly toward
intermolecular forces present in them.
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(ii) Dipole – Dipole Forces

If molecules of a substance are polar in nature, the positive (δ+) end of one dipole
attracts the negative (δ–) end of the other (Fig. 5.4) Magnitude of these forces
depends upon the dipole moment of the substance. These interactions are quite
strong as compared to London forces and increase the melting and boiling points
of polar compounds (such as ethers) as compared to those of similar non-polar
compounds (such as hydrocarbons) that have nearly the same molar mass

�+ �+�– �–

Fig. 5.4: Dipole-dipole forces

Compound Molar Mass Melting Boiling
/(g mol–1) Point/K point/K

n-Butane (non-polar) C4H10 58 135.2 272.6

Propanone (polar) (CH3)2C = O 58 179.4 329.3

In addition to the dipole-dipole forces, London or dispersion forces also operate
between polar molecules.

(iii) Dipole – Induced Dipole Forces

This type of forces operate in mixtures (solutions) of two substances, out of
which one is polar in nature and the other is non-polar. The polar molecules
induce a dipole in the neighbouring non-polar molecules and an electrostatic
force of attraction starts operating between them (Fig 5.5). Magnitude of these
forces depend upon two factors

�+

�+ �+

�–

�– �–

(a)

(b)

Fig. 5.5 Dipole-induced dipole forces: (a) A pair of polar and a non-polar molecules
(b) Induced dipole in the non-polar molecule

(a) Dipole moment of the polar molecule. Greater the dipole moment, stronger
is the attractive force.
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(b) Polarizability of the non-polar molecule. More polarizable is the non-polar
molecule, greater is the dipole moment of the induced dipole and stronger
is the attractive force.

Dispersion or London forces also operate between polar and non-polar
molecules and they experience the cumulative effect of both types of forces.

(iv) Hydrogen Bonding

Hydrogen boding is responsible for abnormally high melting and boiling points
of water, ethanol, ammonia, hydrogen fluoride etc. The following table gives
the boiling points of hydrides of group 14, 15, 16, and 17 elements. In each
group the boiling point of hydrides is increasing with molar mass from top to
bottom. The trend is clearly seen in hydrides of group 14. In other groups, the
trend can be seen in all the hydrides, except that of the first element in each
group i.e. NH3 (Group 15), H2O(Group 16) and HF (Group 17) respectively.
Their boiling points are exceptionally high due to the presence of hydrogen
bonding in these hydrides.

Boiling Points of some Hydrides

Group 14 Group 15 Group 16 Group 17

Hydride B. P./K Hydride B.P./K Hydride B.P./K Hydride B.P./K

CH4 109 NH3 240 H2O 373 HF 293

SiH4 161 PH3 183 H2S 212 HCl 188

GeH4 183 AsH3 218 H2Se 232 HBr 207

SnH4 221 SbH3 255 H2Te 271 HI 238

Hydrogen bonding is responsible for some unusual properties of water, like its
existence in liquid state over a wide range of one hundred degrees (273 K to
373 K), high heats of fusion and vaporization and its solid form (ice) being lighter
than liquid water. Hydrogen bonding plays a crucial role in the structure of DNA
by holding together the two helical nucleic acid chains.

5.3 GENERAL BEHAVIOUR OF GASES: THE GAS LAWS

The volume of a given mass of a gas depends upon the temperature and pressure
under which the gas exists. It is, therefore, possible to describe the behaviour of
gases in terms of the four variables: temperature, T ; pressure p; volume V and amount
(number of moles, n). For a given amount of gas the volume of gas changes with
change in variables such as temperture and pressure. The relationship between
any two of the variables is studied, keeping the other variable constant by various
laws which are described below.
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5.3.1 Effect of Pressure on the Volume of the Gas (Boyle’s law)

The effects of pressure on the volume of gas for a given amount of gas at constant
temperture was studied by Robert Boyle in 1662 for different gases. He observed
that if the volume of gas is doubled the pressure is halved and vice versa. Boyle’s
law states that at  constant temperature, the volume of a given amount of a gas is
inversely proportional to its pressure.

Mathematically Boyle’s law is expressed as shown below:

 V ∝ 
1

p (at constant T and n)

or p
1
 V

1
= p

2
V

2

when the pressure of the gas, p is plotted against volume of the gas, V the

exponential curve is obtained (Fig. 5.6). However when the pressure, p of the gas

is plotted against 
1

V
 a straight line is obtained  (Fig. 5.7). If the product of pressure

and volume (pV) is plotted against pressure (p) a straight line parellel to x-axis

(pressure is axis) is obtained (Fig. 5.8).

Fig. 5.6 : A graph of p versues V Fig. 5.7 : A graph of p versues 
1

V
⎛ ⎞
⎜ ⎟
⎝ ⎠

Fig. 5.8 : A graph of pV versues p

T, = contantn

p
�

v �

T = contant1n

p
�

p
V

Pressure ( )p

T = contant1n
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Example 5.1 : The volume occupied by a given mass of a gas at 298 K is 24 mL
at 1 atmospheric pressure. Calculate the volume of the gas if the pressure is
increased to 1.25 atmosphere keeping temperature constant.

Solution : Given that
V

1
= 25 mL p

1
 = 1 atm

V
2

= ? p
2
 = 1.25 atm

According to Boyle’s Law, p
1
V

1
 = p

2
 V

2

substituting the values of p
1
, V

1
 and p

2
 in the above expression we get

V
2
 = 1 1

2

Vp

p
 = 

(1 atm) (25mL)

(1.25 atm)
 = 20 mL

The volume occupied by the gas is 20 mL at 298 K and 1.25 atm pressure.

Example 5.2 : The volume of a certain amount of a gas is decreased to one fifth
of its initial volume at a constant temperature. What is the final pressure?

Solution : Let

Initial volume = V
1

Initial pressure = p
1

Final volume V
2
 = V

1 
/5 Final pressure = p

2

By Boyle’s law, we know that at constant temperature

p
1
V

1
= p

2
 V

2

p
2

= 
1 1

2

Vp

V  = 1 1

1

V
V
5

×p
 = 5p

1

Thus when volume is decreased to 
1

th
5

 of its initial volume, the pressure is

increased by 5 times of the initial voluem.

5.3.2 Effect of Temperature on the Volume of Gas (Charles’ Law)

The effects of temperature on the volume of the gas was studied by Jacques
Charles in 1787 and Gay Lussac in 1802 at constant pressure for different gases.
Their conclusion can be given as Charles’ law which states that at a constant
pressure, the volume of a given amount of gas is directly proportional to the
absolute temperature.

So, according to Charles’ Law, the volume of a gas increases as its absolute
temperature is being raised, if its absolute temperature is lowered, its volume will
consequently decrease. Mathematically, Charles’ Law is expressed as shown below:

V ∝  t (at constant p and n)

V = k . t (k is a constant)
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Therefore, V
1
/t

1
= V

2
/t

2

Graphical representation of Charles’ Law is a straight line pointing away from
the origin of the graph as shown in Fig. 5.9.

Here graph of the volume of a gas (V) plotted against its temperature at constant
pressure and amount (in moles). Notice that the graph is a straight line with a
positive gradient (slope).

V

P, = constantn

–273ºC Temperature T

Fig. 5.9 : A graph of V versues T

Mathematically volume of a gas at temperature t is given as

v
t

= v
0
 + 0

273
×

v
t  = 0 0

273
1

273 273

+⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
t t

v v

Thus at t = –273ºC

v
t

= 0
273 273

0
273

−⎛ ⎞ =⎜ ⎟⎝ ⎠
v

This means that at –273ºC, the volume of the gas is reduced to zero i.e., the gas
ceases to exist. Thus this temperature (–273ºC) at which the gas hypothetically
ceases to exist is called Absolute zero. It is represented by zero K.

This is the theoretically lowest possible temperature. In actual practice, we cannot
reduce the temperature of the gas to zero kelvin.

Kelvin Scale of Temperatue

The scale of temperature which has –273ºC as zero is called Kelvin Scale. Degree
celsius is converted to Kelvin by adding 273. Thus

t/ºC + 273 = T/K

where T = temperature in Kelvin

t = temperature in celcius

For example 15ºC can be converted in K by adding 273 to 15.
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5.3.3 Effect of Temperature on Pressure (Gay-Lussac's Law)

This law states that.

Pressure of given amount of a gas at constant volume is directly proportional
to its absolute temperature.

p α T

p = kT

Example 5.3 : A given amount of a gas is maintained at constant pressure and
occupies a volume of 2 litres at 1000ºC. What would be volume if gas is cooled
to 0ºC keeping pressure constant.

Solution : Given that,

Initial volume V
1
 = 2L T

1
= 1000 + 273 = 1273 K

Final volume V
2
 = ? T

2
= 0 + 273 = 273 K

Now using Charle’s Law V
1
/T

1
= V

2
/T

2
 or V

2
 = (V

1
/T

1
) × T

2

On substituting the values we get

V
2
 = (V

1
/T

1
) × T

2
 = (2L /1273 K) × 273 K = 0.4291 L

5.3.4 Avogadros’ Law

The Italian physicist Amadeo Avogadro was the first to propose, in 1811, a
relationship between the volume of a gas and the number of molecules present in
it. This, relationship is known as Avogadros’ Law. It states that :

Equal volumes of all gases at the same temperature and pressure contain equal
number of molecules.

Mathematically, Avogadros’ law is expressed as :

V α N (at constant temperature and pressure)

Where V and N are volume and number of molecules respectively.

At a given temperature and pressure, the number of molecules present in the gas
is directly proportional to the number of moles.

therefore,  N ∝  n

Where n is the number of moles

∴ V ∝  n

or
V

n
= constant
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Also
1

1

V

n = 
2

2

V

n

He also found that the number of molecules present in 1 mole of any substance
(22.4 litre of any gas at 273 K temperature and 1 atmosphere pressure) is 6.022
× 1023 molecules. This number is known as Avogadros’ number.

It is the number of molecules (6.022 × 1023) of any gas present in a volume of
22.4 L (at 273 K and 1 atm) and it is the same for the lightest gas (hydrogen) as
for a heavy gas such as carbon dioxide or bromine.

Example 5.4 : 0.965 mol of a gas occupies a volume of 5.0 L at 298 K temperature
and 1 atm pressure. What would be the volume of 1.80 mol of the gas at the same
temperature and pressure?

Solution : V
1
 n

2
= V

2
 n

1

V
2

= 1 2

1

V n

n
 = 

(5.0 L) (1.8 mol)

(0.965 mol)

V
2

=  9.33 L

Example 5.5 : Compare the volumes of 16 g of oxygen and 14 g nitrogen at the
same temperature and pressure.

Solution :Number of moles of O
2
= 16 g/32 g mol–1 = 0.5 mol

Number of moles of N
2

= 14 g/28 g mol–1 = 0.5 mol

Since the two gases are at the same temperature and pressure, and contain equal
number of mole, hence according to the Avogadro’s Law they should also occupy
the same volume.

INTEXT QUESTION 5.1

1. The density of a gas is usually less than that of the liquid. Explain.

2. Calculate the pressure (atm) required to compress 500 mL of gas at 0.20 atm
into a volume of 10 mL.

3. Equal volumes of oxygen gas and an unknown gas weigh 2.00 and 1.75 g
respectively under the same experimental conditions. What is the molar mass
of the unknown gas?

4. What type of intermolecular interactions are present in (a) Ne gas (b) Carbon
monoxide.
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5.3 THE IDEAL GAS EQUATION

Boyle’s Law, Charles’ Law and Avogadro’s Law can be combined to give a single
equation which represents the relation between the pressure, volume and kelvin
temperature of a given amount of a gas under different conditions. Thus

V ∝  1/p at constant temperature (Boyles’ Law)

V ∝  T at constant pressure (Charles’ Law)

V ∝  n at constant temperature and pressure (Avogadros’ Law)

All the three expressions can be combined into a single expression

V ∝  nT/P or pV ∝  n T

or  pV = constant × n T

The constant in this equation is called ‘universal gas constant’ or ‘molar gas
constant’, represented by R. Thus we can write for 1 mole of a gas

pV = RT

Correspondingly, for n moles of a gas we have

pV = n RT

This is known as the ideal gas equation because it holds only when gases are
behaving as ‘ideal’ gases.

Since for a given mass of gas we can write

pV/T = a constant, we have

p
1
 V

1
/T

1
= p

2
 V

2
/T

2

Where p
1
, V

1
 and T

1
 refer to one set of conditions and p

2
, V

2
 and T

2
 refer to a

different set of conditions.

The numerical value of R can be found by substituting experimental quantities in
the equation. At STP, T = 273.15 K,  p = 1 bar (105 Pa) and for 1 mol of gas (n =
1), V = 22.711 L. Consequently,

R = pV/nT = (105 Pa) (22.711 × 10–3 m3) / (1 mol) (273.15K)

= 8.314 J K–1 mol–1

At STP conditions used earlier (0°C and 1 atom pressure) the volume occupied
by 1 mol of gas is 22.414 L

The value of R depends on the units adopted for the quantities in the equation
pV = nRT. The various values are:
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R = 8.314 J K–1 mol–1

R = 0.082057 L atm K–1 mol–1  (for calculation purpose the value is
taken as 0.0821 L atm K–1 mol–1)

R = 8.314 × 107 erg K–1 mol–1

R = 1.987 cal K–1 mol–1

Example 5.6 : At 273 K, 10 mol of a gas is confined in container of volume
224 L. Calculate the pressure of the gas. R = 0.0821 L atm mol–1 K–1.

Solution : The ideal gas equation pV = nRT will be used here

n = 10 mol, R = 0.0821 atm L K–1 mol–1

V = 224 L    T = 273K p = ?

On substituting these values in the above equation we get

p = nRT/V  = (10 mol × 0.0821 atm L mol–1 K–1 × 273K) / 224L = 0.99998 atm
= 1 atm

5.4  DALTONS’ LAW OF PARTIAL PRESSURE

The behaviour observed when two or more non-reacting gases are placed in the
same container is given by Dalton’s Law of partial pressures. Dalton’s Law states
that.

The total pressure exerted by a mixture of non-reacting gases is equal to the sum
of the partial pressures of the various gases present in the mixture.

The partial pressure is defined as the pressure the gas would exert if it was alone
in the container. Suppose a sample of hydrogen is pumped into a one litre box
and its pressure is found to be 0.065 atm. Suppose, further a sample or argon is
pumped into a second one litre box and its pressure is found to be 0.027 atm. If
both samples are now transferred to a third one litre box, the pressure is observed
to be 0.092 atm. For the general case, Daltons’ Law can be written as

p
total

= p
A
  +   p

B  
 +   p

C
 +....

Where p
A
, p

B
, p

C
,.... are the partial pressure of gases A, B, C, .... respectively.

This gas laws provide a simple way of calculating the partial pressure of each
component, given the composition of the mixture and the total pressure. First we
introduce the mole fractions X

A
 and X

B
. These are defined as

X
A

= An

n
 and  X

B
 = Bn

n

Where n
A
 and n

B
 are the number of moles of gas A and B respectively and n = n

A

+ n
B
.
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Since p
A

= n
A
 RT/V, p

B
 = n

B
 RT/V and p = n RT/V,

it follows that

p
A

= X
A 

p and p
B
 = X

B 
p

This is an exceptionally useful (and simple) way of calculating at partial pressures
when the composition and total (measured) pressure of a mixture of gas is known.

Example 5.7 : Atmosphere is often considered mainly as a mixture of nitrogen
and oxygen: 76.8% by mass of nitrogen and 23.2% by mass of oxygen. Calculate
the partial pressure of each  gas when the total pressure is 1 atm.

Solution : The number of moles of each component is

2Np = 76.8 g / 28 g mol–1 = 2.74 mol

2Op = 23.2 g / 32 g mol–1 = 0.725 mol

The mole fractions of the components are therefore

2NX  = 
2.74

2.74 0.725+  = 0.791 ; 
2OX  = 

0.725

2.74 0.725+  = 0.209

The partial pressures are therefore given by

2Np = 0.791 × 1 atm = 0.791 atm

2Op = 0.209 × 1 atm = 0.209 atm

5.5  GRAHAM’S LAW OF DIFFUSION

If we open a bottle of perfume in one corner of a room or burn an incense stick
we can feel the smell of the perfume or the incense stick all over the room also.
The smell of perfume or incense stick spreads from one point of the room to the
other by mixing with air. This free intermingling of gases when placed in contact
with each other is known as diffusion.

Diffusion occurs in liquids as well as in gases. Effusion is the escape of a gas
through a small hole, as in case of a puncture in a tyre.

The experimental observation of the rate of effusion of gases through a small
hole in the side led Graham (1829) to formulate the following law:

At constant temperature and pressure, the rate of diffusion of a gas is inversely
proportional to the square root of its density. Graham’s law is applicable to both
diffusion and effusion.

If the time for a given volume of gas A to escape is t
A
, while the time for the same

volume of gas B to escape is t
B
, it follows, that,
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t
A
/t

B
 = (rate)

B
 / (rate)

A
 = /ρ ρA B  where ρ

A
 and ρ

B
 are the densities of gases A and

B respectively.

The ratio of the densities of the gases is the same as the ratio of the molecular
masses of the gases at the same temperature and pressure.

hence, t
A
/t

B
 = (rate)

B
 / (rate)

A
 = ρ

A
 / ρ

B
 = A BM /M  where M

A
 and M

B
 are the

molecular masses of gases A and B respectively.

INTEXT QUESTIONS 5.2

1. What is the difference between diffusion and effusion.

2. Explain why Daltons’ law is not applicable to a system of ammonia and
hydrogen chloride gas.

3. The rates of diffusion of CO
2
 and O

3
 were found to be 0.29 and 0.271. What

is the molecular mass of O
3
 if the molecular mass of CO

2
 is 44.

4. Calculate the pressure exerted by 5.0 mol of carbon dioxide in a 1 litre flask
at 47ºC using ideal gas equation.

5.6 GAY LUSSAC’S LAW OF COMBINING VOLUMES

One of the laws of chemical bomination is Gay Lussac's law of combining
volumes.

This law states that in any chemical reaction involving gases the volumes of
gaseous reactants and products (if any) bear a simple ratio to one another, when
measured under similar conditions of pressure and temperature in the reaction

N2(g) + 3H2(g) ⎯→ 2NH3(g)
    1 vol      3 vol            2 vol

The ratio of volumes of nitrogen, hydrogen and ammonia is 1 : 3 : 2 when their
volumes are measured at the same temperature and pressure. Similarly, in the
reaction

2H2(g) + O2(g) ⎯→ 2H2O(l)
  2 vol     1 vol

hydrogen and oxygen always react in the ratio 2 : 1 by volume.

This law is nothing but the law of definite proportions stated in terms of volume.
Gay Lussac's law when combined with gas laws led to the concept of molecules.

Gay Lussac’s Law and the concept of molecule

Prior to the Avogadro’s law, a similar hypothesis was put forward by Berzelius.
“Equal volumes of all gases, under similar conditions of temperature and
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pressure contain equal number of atoms.” This hypothesis, when combined with
the Gay-Lussac’s law led to conclusions which contradicted Dalton’s atomic
theory. For example consider the gas phase reaction between hydrogen and
chlorine to form hydrogen chloride

Hydrogen(g) + Chlorine(g) ⎯→ Hydrogen chloride(g)
     1 vol 1 vol    2 vol (same T and P)

Gay Lussac’s law (experimental result)

Berzelius x number of x number of 2x number of
hypothesised hydrogen atoms chlorine atoms compound atoms

of hydrogen chloride

Divided by x 1 atom of 1 atom of 2 compound atoms
hydrogen chlorine of hydrogen chloride

Divided by 2
1

2
atom of

1

2
atom of 1 compound atom

hydrogen chlorine of hydrogen chloride

('Compound atom' was the term used by Dalton for the smallest particle of
compounds before of molecule was developed)

Thus, one compound atom of hydrogen chloride contains one-half atom of each
of hydrogen and chlorine. This contradicts the Dalton’s atomic theory according

to which atoms are indivisible. Therefore fractional atoms (
1

2
atom each of H

and Cl) cannot be present in hydrogen chloride. Due to this contradiction
Avogadro modified the Berzelius hypothesis by replacing the term ‘atom’ by
‘molecule’. According to Avogadro’s law, equal volumes of all gases, under
similar conditions of temperature and pressure contain equal number of
molecules”. This law when applied to the same reaction as earlier, modifies the
conclusion.

Hydrogen (g) + Chlorine (g) ⎯→ Hydrogen chloride (g)
    1 vol 1 vol 2 vol

Gay Lussac’s Law

Avogadros law ‘x’ molecules ‘x’ molecules ‘2x’ molecules of
of hydrogen of chlorine hydrogen chloride

Divide by 2x
1

2
molecule

1

2
molecule 1 molecule of

of hydrogen of chlorine hydrogen chloride

Thus, now, one molecule of hydrogen chloride, is made from one-half molecule
each of hydrogen and chlorine. ‘Molecule’ was accepted as the smallest stable
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particle of matter (element or compound) which has the same properties as the
bulk of the matter. Further, it was suggested that each molecule of an element
may contain more than one atom of the element. Later studies showed that both,
hydrogen and chlorine molecules are diatomic and contain two atoms each. Their
chemical formulae are H2 and Cl2 respectively; one-half molecule, now, would
mean one atom of H or Cl. Thus one molecule (rather than compound atom)
of hydrogen chloride would be formed by one atom each of hydrogen and
chlorine and its formula becomes HCl. Now we may write the reaction as

H2(g)      +        Cl2(g)      ⎯→         2HCl(g)
       1 vol                     1 vol                  2 vol

‘x’ molecules ‘x’ molecules ‘2x’ molecules
1

2
 molecule

1

2
 molecule 1 molecule

1 atom 1 atom 1 molecule

Thus Gay-Lussac’s law and Avogadro’s Law led to the concept of ‘molecule’.

5.7 KINETIC MOLECULAR THEOY OF GASES
(ACCOUNTING FOR THE GAS LAWS)

To explain the behaviour of the gases theoretically, Clausius, Maxwell and
Boltzmann made the following assumptions:

(1) Gases consist of large number of tiny particles called molecules.

(2) The gas molecules are so small and so far apart that the total volume of the
molecules is a negligible fraction of the total volume occupied by the gas.

(3) The molecules are in a state of constant, rapid and random motion colliding
with one another and with the walls of the container.

(4) There are no attractive or repulsive forces between the molecules of the gas.

(5) The collisions of the molecules among themselves and with the walls of the
containing vessel are perfectly elastic, so that there is no loss of energy
during collisions.

(6) The pressure exerted by a gas is due to the bombardment of the molecules
on the walls of the containing vessel.

(7) The kinetic energy of a gas is a directly proportional to the absolute
temperature of the gas.

On the basis of this model, it is possible to derive the following expression for a
gas:

pV = 
1

3
m 2NC

Where p is pressure, V denotes volume, m is the mass of a gas molecule, N is the total

number of molecules, and C  is the root mean square velocity of the gas molecules.
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5.7.1 Root Mean Square Velocity

Root mean square velocity is the square root of the average of the squares of all
the molecular velocities. Mathematically,

RMS Velocity = ( )2 2 2
1 2 NC + C + ...+ C /N

where C
1
, C

2
.... C

N
 the molecular velocities.

5.7.2 Average Velocities

This is defined as

u
av

= 1 2 N...

N

u u u+ + +

and is given by the expression

u
av

= 
8

π
RT

M

5.8 DISTRIBUTION OF MOLECULAR SPEEDS

According to Maxwell in a gas all the molecules are in a state of constant rapid
random motion and they collide with one another and with the walls of the vessel.
During collision the resdistribution of the energy takes place. As a result their
speed and the kinetic energy changes. Therefore at any instant different molecules
have different speed and hence different kinetic energy. At the given temperature
even though the speed of the individual molecule constinuously changes, the
fraction of the molecules having the same speed remains constant and this is
known as Maxwell–Bolttzmann Distribution Law.

At the given temperature this fraction is denoted by 
N

N

d
 where dN is number of

molecules having the same velocity and N is the total number of the molecules
present in the gas. At the given temperature this fraction of the molecule is plotted
against the molecular speed as shown as figure 5.10.

T = Constant

cmp cav crms

F
ra
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io

n
o
f

m
o
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s
d
N N

�
�

Fig. 5.10: Maxwells distribution of speeds of molecules at a constant temperature
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In the above Fig. 5.10, the maximum in the distribution curve corresponds to
the speed possessed by the highest fraction of molecules. This is known as the
most probable speed cmp. Also shown in the figure are the average speed,
cav and the root mean square (rms) speed crms These types of speeds are
related to the temperatures, T and the molar mass, M of the gas by the following
relations

mp
2RT

c
M

=

av
8RT

c
M

=
π

=rms

3RT
c

M

The relative values of these speeds are

cmp : cav : crms

1 : 1.13 : 1.22

Or   0.82 : 0.92 : 1

From any of the above relations it can be seen that these speeds are related to
the temperature and molar mass of the gas.

Dependence of molecular speeds on temperature

The temperature dependence of molecular speeds is shown in Fig. 5.11. On
increasing the temperature the fraction of molecules with higher speeds increases
and with somes speeds decreases. The maxima shifts to higher velocity side but
its height decreases.

Velocity

dN
N

T > T > T3 2 1

Fig. 5.11: Effect of temperature on distribution of velocities.



Notes

CHEMISTRY

MODULE - 3 The Gaseous and Liquid State

States of Matter

 154

Dependence of molecular speeds on molar mass of the gas

At a constant temperature any of the three types of speeds is inversely
proportional to the square root of the molar mass of the gas, that is,

mp
1

C
M

∝

Hence, at the same temperature, the most probable speed of a lighter gas would
be more than that of a heavier gas. Figure 5.12 a shows the distribution curves
of H2 and N2 gases.

T = Constant
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N2

Molecular speed C ��

Fig. 5.12 A: Effect of molar mass of the gas on distribution of speeds.

5.9 DEVIATION FROM IDEAL GAS BAHAVIOUR

The gas laws mentioned above are strictly valid for an ideal gas under all conditions
of temperature and pressure. Real gases show deviations from these laws at low
temperature and high pressure. These deviations can be shown clearly by plotting

pV

nRT
 as a function of pressure at constant temperature,

pV

nRT
= observed

ideal

V

V
 = Z (compressibility factor)

Such a plot is shown in Fig. 5.13 for an ideal gas and a few real gases. you may

note that for in ideal gas pV = nRT hence 
pV

nRT
 = z = 1. Thus a straight line

obtained for ideal gas in this plot, but for real gases diferent curves are obtained.

Gases deviate from ideal behaviour due to the following faulty assumptions of
kinetic theory :

1. Volume of the molecules of a gas is negligibly small in comparison to the
space occupied by the gas.

2. There is no force of attraction between the molecules of a gas.
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Contrary to assumption(1), the volume occupied by the molecules of a gas becomes
significant at high pressures. If nb is the volume occupied by the molecules, the actual
volume of the gas is (V – nb). Assumption (2) too doesn’t hold good as at high
pressures molecular interactions start operating. Molecules are dragged back by other
molecules which affects the pressure exerted by them on the walls of the container.

P
ideal

= P
real

 + 
2

2

an

V

(P
real

 is observed pressure and 
2

2

an

V
 is correction term)

In view of the corrections for pressure and volume, ideal gas equation can be
rewritten as

2

2

⎛ ⎞
+⎜ ⎟⎝ ⎠

an
p

V
 (V – nb) = nRT

This is known as van der Waals' equation
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Fig. 5.13 : The plot volume versus P for real gases

5.10 LIQUEFACTION OF GAS

Any gas can be liquified at atmospheric pressure if it is cooled sufficiently. Many
gases (but not all) can be liquified at ordinary temperature by compressing them.

The conditions of temperature and pressure under which gases liquify were first
investigated by Andrews in 1869.

Andrews subjected CO
2
 to various pressures at different temperatures and plotted

the effect of pressure on volume (Fig. 5.14). The curve obtained at a given
temperature is called an isotherm. As can be seen in the figure, at 321 K the
volume of the gas decreased with the increased pressure approximately in
accordance with the Boyle’s Law. At 294 K, however, the volume first decreases
in accordance with Boyle’s Law until the pressure was increased to about 60
atm. At this pressure there was a sudden break in the curve and liquid carbon
dioxide appeared. The pressure remained constant until all the gas had been
converted into liquid. Subsequent increase of pressure caused practically no change
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in volume. In accordance with the general rule that extremely high pressures are
required to compress liquids appreciably.

Liquefaction of Gases

343 K

323 K

304.1 K

294 K

286 K
Gas

Liquid and Gas

Liquid

Volume ���

P
re

ss
u
re

�
�

�

Figure 5.14: Isotherms of carbon dioxide

Similar changes took place when the isotherms were constructed for temperatures
below 294 K, except that the pressure required to liquify the gas became smaller
as the temperature decreased. Andrews found that liquifaction could be brought
about at all temperatures below 304.1 K. But above this temperature no liquifaction
occured no matter how much pressure was increased. This temperature was
therefore called the critical temperature for CO

2
. The pressure required to liquify

the gas at the critical temperature was called critical pressure, and the volume
of 1 mole of the substance at the critical temperature and pressure, the critical
volume.

The temperature above which a gas cannot be liquified, however large the
pressure may be is known as critical temperature.

Table 5.2 list values of the critical temperature and pressure critical volume for
some common substances.

Table 5.2 : Critical temperatures and critical pressures

Substance Critical Critical
Temperature (K) Pressure (atm)

Water, H
2
O 647 217.7

Sulphur dioxide, SO
2

430 77.7

Ammonia, NH
3

406 112.5

Hydrogen Chloride, HCl 324 81.6

Carbon dioxide, CO
2

304 73.0

Oxygen, O
2

154 49.7

Nitrogen, N
2

126 33.5

Hydrogen, H
2

33 12.8
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INTEXT QUESTIONS 5.3

1. What are the conditions under which real gases  behave as ideal gas.

2. Which term in van der waals equation accounts for the molecular volume.

3. Calculate the root mean square velocity of ozone kept in a closed vessel at
20ºC and 1 atm pressure.

4. What is compressibility factor.

5.11 NATURE OF LIQUIDS

Look at Figure 5.1 in which the molecular arrangement has been shown in the
three states of matter. What do you notice?

In figure 5.1a, you would find that the molecules
are far apart. A gaseous state can be represented
by this arrangement. In liquid state (figure 5.1b),
molecules are closer as compared to gaseous
state. You would notice that they have very
little spaces between them. However, there is
no order in arrangement of molecules. Further
we say that, these molecules can move about,
but with lesser speeds than those in gases. They
can still collide with one another as in the gaseous
state. You would recall that the molecules in
gases have very little attraction between them.
But in liquid state the attraction between the
molecules is comparatively much stronger as
compared to that in the gaseous state. The
attractions are strong enough to keep the
molecules in aggregation. Contrary to this, in
solids (Fig. 5.1a) you notice that the molecules
are arranged at the closest possible distance.

Solid state is a well ordered state and has very
strong intermolecular forces. You would learn
more about solids in lesson 8.

We would say, in a gas there is complete chaos
due to very weak intermolecular forces, whereas
in solids there is a complete order due to strong forces. Liquids fall between
gases and solids. Liquid molecules have some freedom of gases state and some
order of solid state. Intermolecular forces in liquids  are strong enough to keep
the molecules close to one another but not strong enough to keep them in perfect
order.

Fig. 5.15 : Arrangement of
molecuels in (a) solids;
(b) liquids and (c) gases

(c)

(b)

(a)
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5.12 PROPERTIES OF LIQUIDS

In this section you would learn how the properties of liquids can be explained in
terms of molecular arrangement and intermolecular forces. Let us consider a few
properties of liquids as examples.

5.12.1 Volume and Shape

You would recall that the liquids (for example water) take the shape of the
container in which they are kept. However, they have a definite volume. How can
you explain the properties of definite volume and variable shape? In liquids, the
attractive forces are strong enough to keep the molecules moving within a definite
boundary. Thus, they maintain a definite volume. These intermolecular forces are
not strong enough to keep them in definite positions. The molecules can, therefore,
move around and take the shape of the container in which they are kept.

5.12.2 Compressibility

Compressibility of a substance is its ability to be squeezed when a force is applied on
it. Let us study the compressibility of liquids with the help of the following activity.

ACTIVITY 5.1

Aim: To study the compressibility of water.

What is required?

A 5 mL syringe and water.

What to do?

(i) Take the syringe and fill it with water by pulling out the plunger.

(ii) Note the volume of water.

(iii) Press the plunger while blocking the nozzle of the syringe with a finger.

What to observe?

Observe the volume of water in the syringe while pressing the plunger. Does the volume
of water change by pressing the plunger? You would observe that it does not change.

The above activity clearly shows that liquids are largely incompressible. It is
because there is very little empty space between the molecules. In contrast, the
gases are highly compressible because of large empty spaces between their
molecules.
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The large difference in the free space in gaseous and liquid states becomes
evident from the fact that the volume occupied by a given amount of a
substance in liquid state is 100-1000 times less than that in the gaseous state.

5.12.3 Diffusion

Diffusion is the process of spreading of a substance from a region of higher
concentration to a region of lower concentration. Let us study the phenomenon
of diffusion in liquids with the help of the following activity.

ACTIVITY 5.2

Aim : To study the phenomenon of diffusion through water.

What is required?

A glass, water, blue ink and a dropper.

What to do?

(i) Take some water in the glass.

(ii) Add a few drops of blue ink into water with the help of a dropper.

What to observe?

Observe the water and ink in the beaker.
Initially the ink does not mix with water. After some time it starts spreading
slowly. After a few hours the whole of water in the glass becomes coloured due
to diffusion of ink through water.

The above activity demonstrates that diffusion occurs in liquids. Why does it
happen? Because the molecules of both the liquids are moving and help in the
diffusion process.

5.12.4 Evaporation

You know that water left in an open pan evaporates slowly until the pan becomes
dry. Evaporation is the process by which a liquid changes into vapour. It occurs
at all temperatures from freezing point to boiling point of the liquid.

In a liquid, at any temperature, a small fraction of the molecules is moving with
relatively high velocity. Such molecules have high kinetic energy. These can
overcome the intermolecular attractive forces and escape through the surface of
the liquid.

Rate of evaporation of a liquid depends on a number of factors. For example,
more is the surface area, faster will be the evaporation. For faster drying, we
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increase the surface area by spreading the wet clothes. If we supply heat to the
liquid, evaporation is faster. The wet clothes dry faster in the sun. The increase in
temperature increases the kinetic  energy of the molecules of the liquid and the
liquid evaporates at a faster rate. We feel cool after the bath. Why do we feel so? It
is because during evaporation water takes the heat from our body and we feel cold.

Now let us compare the rate of evaporation of two liquids, for example, water and
alcohol. Which of these two liquids evaporates faster? You must have experienced
that alcohol evaporates faster. Why does this happen? The number of molecules
escaping from a liquid depends upon the attractive forces. When these forces are
stronger, fewer molecule escape. In alcohol, these attractive forces are weaker than
those in the water. Hence, alcohol evaporates faster than water.

5.13 VAPOUR PRESSURE AND BOILING POINT

In the previous section you have learnt that liquids evaporate when kept in an
open vessel. Different liquids evaporate to different extent under similar conditions.
The extent of evaporation of a liquid is measured with the help of vapour
pressure of a liquid. In this section, you will study about it and also about the
boiling point of a  liquid.

5.13.1 Vapour Pressure of a Liquid

You know that a liquid placed in an open vessel evaporates completely. If,
however, the liquid is allowed to evaporate in a closed vessel, say in stoppered
bottle or a bell jar, evaporation occurs, but after sometime the level of the liquid
does not change any further and becomes constant. Let us understand how does
it happen. In the closed vessel, the molecules evaporating from the liquid surface
are confined to a limited space. These molecules may collide among themselves
or with the molecules of air and some of them may start moving towards the
surface of the liquid and enter into it. This is known as condensation. In the

Initially molecules After some time At equilibrium the rates of
evaporate condensation begins eavporation and condensation

become equal

Fig. 5.16 : Establishing (vapour liquid) equilibrium under a evacuated jar
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beginning, rate of evaporation is greater than the rate of condensation. But as
more and more molecules accumulate in the space above the liquid, rate of
condensation gradually increases. After some time, rate of evaporation becomes
equal to the rate of condensation and an equilibrium state is reached
(Fig. 5.16). The number of molecules in the vapour above the liquid becomes
constant. These molecules exert certain pressure over the surface of the liquid.
This pressure is known as equilibrium vapour pressure, saturated vapour
pressure or simply as vapour pressure. The vapour pressure of a liquid has a
characteristic value at a given temperature. For example, vapour pressure of
water is 17.5 Torr and that of benzene is 75.00 Torr at 20º C. The vapour
pressure of a liquid increases with increase in temperature. It is so because at a
higher temperature more molecules have sufficiently high energy to overcome
the forces of attraction and escape to form vapour. A plot of vapour pressure as
a function of temperature is called vapour pressure curve. Figure 5.17 depicts
the vapour pressure curves of some liquids.

Fig. 5.17 : Vapour pressure curves of some liquids.

What would happen if we remove some of the vapour from the closed vessel.
Would the vapour pressure of the liquid increase, decrease or remain constant?
Vapour pressure of the liquid would remain constant at that temperature. In the
beginning, the vapour pressure would decrease after the removal of the vapour,
but soon more liquid would evaporate to maintain the equilibrium and the
original vapour pressure would be restored. So the vapour pressure of a liquid
has a definite value at a particular temperature.

5.13.2 Boiling

You must have seen the formation of bubbles at the base of a vessel, in which a
liquid is heated. The rate of formation of bubbles increases with increse in heat
supplied. What are the bubbles made up of? The first bubbles that you see are of
the air, which is driven out of the liquid by increase in temperature. After some
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time, bubbles of the liquid are formed throughout vapour. These bubbles rise to
the surface and break. When this happens, we say that the liquid is boiling. The
bubbles in the liquid the liquid rise and break form only if its vapour pressure is
equal to the atmospheric pressure.

The temperature at which boiling occurs is called the boiling point of the liquid.
At this temperature the vapour pressure of the liquid is equal to the atmospheric
pressure. The boiling point, therefore, depends upon the atmospheric pressure.
For example, water boils at 100ºC at 760 Torr and at 97.7ºC at 700 Torr.

The normal boiling point of a liquid is defined as the temperature at which
the vapour pressure of a liquid is equal to one atmosphere or 760 Torr.

The boiling point of a liquid depends upon its nature. A more volatile liquid
would boil at a lower temperature than a less volatile liquid. You can again refer
to figure 5.3 and note that diethyl ether boils at a much lower temperature than
water, because it is highly volatile liquid. The boiling point of ethanol lies in
between those of diethyl ether and water. Vapour pressures or boiling points of
liquids give us an idea of the strength of attractive forces between molecules in
liquids. Liquids having lower boiling points have weaker attractive forces in
comparison to those having higher boiling points.

You can make a liquid boil at temperature other than its normal boiling point.
How? Simply alter the pressure above the liquid. If you increase this pressure,
you can increase the boiling point and if you can decrease this pressure you
decrease the boiling point. On the mountains, the atmospheric pressure decreases
and therefore boiling point of water also decreases. People living on hills face
problem in cooking their meals. They, therefore, use pressure cooker. How food
is cooked faster in it? The lid of pressure cooker does not allow water vapours to
escape. On heating the water vapours accumulate and the inside pressure
increases. This makes the water boil at a higher temperature and the food is
cooked faster.

5.13.3 Evaporation and Boiling

Evaporation and boiling, both involve conversion of a liquid into vapour and
appear to be similar. However, they differ from each other in some aspects.
Evaporation occurs at all temperatures from freezing point of a liquid to its
boiling point, while boiling occurs at a definite temperature only i.e, at its boiling
point. Evaporation occurs slowly while boiling is a fast process. Evaporation of a
liquid occurs at its surface alone while boiling occurs throughout the liquid.
These differences between evaporation and boiling have been summarized in
Table 5.3.
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Table 5.3 : Differences between evaporation and boiling

S.No. Evaporation Boiling

1. It takes place at all temperatures. It takes place at a definite temperature.

2. It is a slow process. It is a fast process

3. It occurs only at the surface of It occurs throughout the liquid.

the liquid.

INTEXT QUESTIONS 5.1

1. Match the following.

Column I Column II

(i) Liquids have a definite (A) The molecules in a liquid can
volume. move about.

(ii) Liquids acquire the shape of (B) The molecules in liquids are
their container. close and have very little free

space.

(iii) Liquids are largely (C) The inter molecular forces
incompressible. liquids strong enough to keep

the molecules moving with in
a definite space.

2. When a liquid is heated till it starts boiling.

(i) What are the small bubbles that appears initially at the bottom and
sides of the vessel made up of?

(ii) What are the large bubbles that form in the boiling liquid made up
of?

3. Liquids A, B and C boil at 65ºC, 120ºC and 90ºC respectively. Arrange them
in the decreasing order of the strength of intermolecular forces.

5.14 SURFACE TENSION

Liquids show the effects of inter molecular forces most dramatically in another
property, namely, surface tension. Any molecule in the interior of liquid is
equally attracted by neighbour molecules from all sides and it does not experience
any ‘net’ force. On the other hand, any molecule at the surface of a liquid is
attracted by other molecules at the surface of the liquid or below it. Due to the
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imbalance of forces, any molecule at the surface experiences a net inward pull
(Figure 5.18). As a result, the surface is under tension as if the liquid were
covered with a tight skin (or stretched membrane). The phenomenon is called
surface tension. Quantitatively, the surface tension is defined as the force
acting on an imaginary line of unit length drawn on the surface of the liquid and
acting perpendicular to it towards the liquid side as shown in Figure 5.5. It is
represented by the Greek letter gamma, γ. Its SI unit is newton per metre (N m–

1) and CGS unit is dyne per centimetre (dyne cm–1). The two units are related as
: 1 N m–1 = 103 dyne cm–1

Fig. 5.18 : Forces acting on molecules, at the surface and in bulk of liquids

Surface molecules of a liquid experience a constant inward force. Therefore they
have a higher energy than the molecules in the bulk of the liquid. Due to this
reason liquids tend to have minimum number of molecules at their surface. This is
achieved by minimising the surface area. In order to increase the surface area
more molecules must come to the surface. This can happen only if some energy is
supplied or work is done. The energy supplied (or work done) for increasing the
surface area of a liquid by a unit amount is known as its surface energy. Its
units are joule per square metre J m–2 or N m–1 (since 1J = 1N m). Thus
dimensionally, the surface tension and surface energy are similar quantities and
they have the same numerical value.

Fig. 5.19 : Surface tension force acting on the surface of a liquid.
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Effect of Temperature

On raising the temperature surface tension of a liquid decreases. It completely
vanishes at the critical temperature. This happens due to the following two
factors:

(i) On heating, the liquids expand. This increases the intermolecular distances.

(ii) On heating, the average kinetic energy of molecules and hence their chaotic
motion increases.

Due to both of these factors, the intermolcular forces become weak and the
surface tension decreases.

Effect of Adding Surface Active Solutes

The solutes which get more concentrated on the surface of the liquid than in the
bulk are called surface active solutes or surfactants. Alcohols are examples of
such substances. Their addition to a liquid lowers its surface tension. The
cleaning action of soaps and detergents is based on this fact.

Some Effects of Surface Tension

Surface tension results in many interesting and important properties of liquids.
Let us now study some of them.

(i) Spherical Shape of liquid drops

You have already learnt that liquids tend to
have a minimum surface area. For a given
volume, the geometrical shape having
minimum surface area is a sphere. Hence,
liquids have a natural tendency to form
spherical drops, when no external force acts on them. Rain drops are distorted
spheres and the distortion is due to the friction of air.

(ii) Wetting and Non-wetting properties

When a drop of liquid is placed on a solid surface, the force of gravity should
cause it to spread out and form a thin layer (Fig. 5.20). Such a liquid is called a
wetting liquid. This happens in case of most of the liquids. For example, drops
of water or alcohol spread out on the surface of glass. Some liquids behave
differently. When a drop of mercury is placed on the surface of glass, it does not
spread out (Fig. 5.20). Such liquids are called non-wetting liquids.

Fig. 5.20 : Wetting and non-wetting

liquids on the surface of a solid.

wetting
liquid

non-wetting
liquid
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Wetting or non-wetting nature of a liquid depends upon two types of forces. The
intermolecular attractive forces between molecules of a liquid are called cohesive
force while those between the molecules of the liquid and the solid (whose
surface is in contact with the liquid) are called adhesive forces. If adhesive
forces are stronger than cohesive forces, the liquid would be wetting in nature
and when cohesive forces are stronger than adhesive forces it would be non-
wetting in nature on the surface of a particular solid.

(iii) Capillary Action

Let us carry out the following activity.

ACTIVITY 5.3

Aim : To study the capillary action.

What is required?

Glass capillary tubes, water, mercury and two petri dishes.

What to do?

(i) Take some water in a petri dish

(ii) Dip one end of a 3-4 cm long capillary in it.

(iii) Take some mercury in another petri dish.

(iv) Dip one end of another 3-4 cm long capillary in it.

What to observe?

Observe the levels of water and mercury in the capillaries. Is it below or above
the levels of the liquids in petri dishes?

(a) (b)
Fig. 5.21 : Capillary Action

You would observe that when one end of a capillary tube is dipped in water, it
rises in the capillary as shown in Fig. 5.21(a). On the other hand when one end of
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a capillary tube is dipped in mercury, its level falls in the capillary as in Fig.
5.21(b).

The phenomenon of rise or fall of a liquid in a capillary is known as capillary
action. The rise of water in the glass capillary is due to its wetting nature as the
adhesive forces are stronger than cohesive forces. Water tends to increase the
area of contact with glass wall of the capillary by rising in it. Mercury being non-
wetting with respect of glass (its cohesive forces are stronger than adhesive
forces) tends to minimise the area of contact by depressing inside the capillary

(iv) Curved meniscus

When a wetting liquid such as water is taken in a glass tube, the liquid tends to
rise slightly along the walls of the tube for increasing its area of contact with
glass. The surface of the liquid (meniscus) becomes curved. It is concave in shape
[Fig. 5.22(a)]. When a non-wetting liquid like mercury is taken a glass tube, it
tends to decrease its area of contact and depresses along the walls of the glass
tube. The meniscus is convex in shape in this case [Fig. 5.22(b)].

Concave
meniscus

(a) Convex
meniscus

(b)

Fig. 5.22 : Curved meniscus of liquids

5.15 VISCOSITY

Every liquid has the ability to flow. It is due to the fact that molecules in a liquid
move freely, although within a limited space. Water flows down a hill under
gravitational force or through pipes when forced by a pump. Some external
force is always required for a liquid to flow. Some liquids like glycerol or honey
flow slowly while others like water and alcohol flow rapidly. This difference is
due to the internal resistance to flow which is called viscosity. The liquids with
higher viscosity flow slowly and are more viscous in nature like glycerol or
honey. Water and alcohol have lower viscosity and are less viscous in nature.
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They flow more rapidly.

Surface of a solid

Fig. 5.23 : Flow of different layers of a liquid

The viscosity is related to the intermolecular forces. Stronger the intermolecular
forces more viscous are the liquids. Let us understand this with the help of Figure
5.9. When a liquid flows steadily, it flows in different layers with one layer sliding
over the other. Such a flow is known as laminar flow. Consider a liquid flowing
steadily on a plane surface. The layer closest to it is almost stationary due to
adhesive forces. As the distance of the layer from the surface increases, is
velocity increases. Thus different layers move with different velocities. Due to
intermolecular forces (cohesive forces) each layer experiences a force of friction
from its adjacent layers. This force of friction, f between two layers depends
upon:

(i) area of contact between them A.

(ii) distance between the layers, dx.

(iii) difference in velocity between the layers, du.

These quantities are related as

f = η A
du

dx

Here η (Greek letter ‘eeta’) is called the coefficient of viscosity and 
du

dx
 is the

velocity gradient between the layers.

If A = 1 cm2, du = 1 cm s–1 and dx = 1 cm, then

f = η

Thus, coefficient of viscosity is the force of friction between two parallel layer of
the liquid which have 1cm2 area of contact, are separated by 1cm and have a
velocity difference of 1cm s–1. It may be noted that f is also equal to the external
force which is required to overcome the force of friction and maintain the steady
flow between two parallel layers having A area of contact, and which are dx
distance apart and moving with a velocity difference of du.
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Units

CGS unit of viscosity is dyne cm–2 s. This unit is also known as poise (P). The SI
unit of viscosity is N m–2s or Pa s. The two units are related as :

1 Pa s = 10 P

The unit poise is found to be too large and its submultiples centipoise (1 cP = 10–

2 P) and milli poise (1 mP = 10–3 P) are used for liquids and micropoise (μP = 10–

6 P) is used for gases.

Effect of Temperature

Viscosity of a liquid decreases on raising the temperature. It is due to decrease in
intermolecular forces on heating as discussed in previous section (Section 5.4).

INTEXT QUESTIONS 5.5

1. Fill in the blanks.

(i) A molecule at the surface of a liquid has ............... energy than the
one within the liquid.

(ii) Surface tension of liquid .................... on cooling.

(iii) Meniscus of a non-wetting liquid is ............... in shape while that of
a wetting liquid is ..................... in shape.

(iv) When one end of a glass capillary tube was dipped in a liquid, the
level of liquid inside the capillary was observed to fall. The adhesive
forces in this liquid are ................. than the cohesive forces between
the liquid and glass.

(v) Liquid X is more viscous than liquid Y. The intermolecular forces in
Y are ................... than in X.

2. What are the SI units of

(i) Surface tension.

(ii) Coefficient of viscosity

3. Why do liquids have a tendency to acquire minimum surface area?

WHAT YOU HAVE LEARNT

Matter exists in three states, namely, solid, liquid and gas.

The three states of matter differ in the relative closeness of the molecules
constituting them.
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Intermolecular interactions present depend upon the nature of the substance.
Various types of interactions are London or dispersion forces, dipole-dipole
dipode induced dipole forces and hydrogen bonding.

There exists a definite relationship between the pressure, volume, temperature
and number of moles of a gas and they are given by Boyle’s law, Charle’s law
and Avogadro’s law.

The gases obeying gas laws are known as ideal gases.

Dalton’s law give the relationship between partial pressures exerted by the
non-reacting gases to the total pressure.

Gay Lussac's law of combining volume and Avogadre's law led to the concept
of molecule.

Most of the gases deviate from the ideal behaviour. The deviations of gases
from ideal behaviour is due to the wrong assumptions of kinetic molecular
theory.

Real gases can be liquified under appropriate conditions.

In liquids the intermolecular force are quite strong as compared to gases but
weak enough to allow the molecules to move within a limited space and the
intermolecular distance is short.

Liquids have definite volume but no definite shape, are almost incompressible
and can diffuse.

Liquids evaporate and exert a definite vapour pressure at specified temperature.

Boiling point is the temperature at which the vapour pressure of the liquid
becomes equal to the external pressure.

Surface tension is the force acting on an imaginary line of unit length drawn
on the surface of the liquid and acting perpendicular to it towards the liquid
side.

Due to surface tension, liquids tend to have minimum surface area and show
the phenomena of capillary rise or fall and curved meniscus.

Viscosity is the internal force of friction to the flow of liquid.

TERMINAL EXERCISE

1. Draw the graphs of the following :
a) p vs V at constant T and n

b) 1/V vs p at constant T and n

c) T vs V at constant p
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2. What is the volume occupied by one mole of a gas at STP (0°C, 1 bar pressure)?

3. The volume of a sample of a gas is 500 mL at a pressure of 1.5 atm. If the
temperature is kept constant, what will be the volume of that gas at
(i) 1 atm. (ii) 5.0 atm.

4. List the wrong assumptions of kinetic theory of gases which led to van der
Waal's equation.

5. What is the standard temperature and pressure?

6. What is the lowest possible temperature?

7. CO
2
 can not be liquefied at 35ºC, however large the pressure may be, Why?

8. A sample of nitrogen gas weighing 9.3 g at a pressure 0.99 atm occupies a
volume of 12.4 litres when its temperature is 55K. What will be its volume
when the temperature is 220 K? Assume pressure is kept constant.

9. Calculate the volume of one mole of oxygen at 27ºC and 2 atm pressure,
given that the volume of oxygen at STP is 22.4 litres.

10. What is the Maxwell-Boltzmann Law?

11. Explain the following properties of liquids on the basis of their structure:

(i) Volume (ii) Shape (iii) Compressibility (iv) Ability to flow

12. Why diffusion can occur in liquids. Explain.

13. Define (i) vapour pressure and (ii) boiling point.

14. Differentiate between evaporation and boiling.

15. Explain the effect of temperature on vapour pressure of a liquid.

16. Define surface tension and give its CGS and SI units.

17. What is surface energy?

18. Why is energy required to increase the surface area of a liquid?

19. What is the effect of addition of a surface active substance on the surface
tension of a liquid.

20. Why are liquid drops spherical in shape?

21. What are wetting and non-wetting liquids?

22. The cohesive forces acting in liquids A and B are C
1
 and C

2
 respectively and

C
1
 > C

2
 Which of them would have higher surface tension.

23. Liquid A rises in glass capillary tube. If one drop of it is put on a plane glass
surface, would it spread out or not. Explain.

24. A liquid forms a convex meniscus in glass tube. Comment on its nature.

25. Define viscosity.

26. What is coefficient of viscosity?
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27. Give CGS and SI units of coefficient of viscosity.

28. What is the effect of temperature on (i) vapour pressure  (ii) surface tension
and  (iii) viscosity of a liquid?

ANSWERS TO INTEXT QUESTIONS

5.1

1. Due to more intermolecular distances in gaseous molecule compared to liquid.

2. Boyle Law equation is

p
1
V

1
= p

2
V

2

(.20 atm) (500 mL) = p
2
 (10 mL)

p
2

= 
(0.20 atm) (500 ml)

10 ml

p
2

= 10 atm.
3. By Avogadro’s Law

moles of O
2

= moles of unknown gas

1

2.00 g

32 g mole− = 
1.75 g

Molecular weight of unknown gas

Molar mass of unknown gas = 
1.75 32

2.00

×
 = 28 g mol–1

Molar mass of unknown gas is 28.
4. (a) Dispersion or London Forces (b) dipole-dipole interactions and dispersion

forces.

5.2

1. Movement of gas molecules through another gas is called diffusion.

When gas escapes from a container through a very small opening it is called
effusion.

2. Ammonia and hydrogen chloride gases are reacting gases and Dalton’s Law
is applicable to mixture of non-reacting gases.

3.
3

2

O

CO

r

r =
2

3

1/ 2

CO

O

⎛ ⎞
⎜ ⎟
⎝ ⎠

M

M

0.271

0.290
=

3

1/ 2

O

44⎛ ⎞
⎜ ⎟
⎝ ⎠M
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Squaring both sides

2

2

(0.271)

(0.290) =
3O

44

M

3OM =
44 0.29 0.29

0.271 0.271

× ×
× = 50.4

Molecular mass of O
3
 = 50.4

4. By ideal gas equation
pV = nRT

p × 1.0 = (5.0 mol)  (0.0821 L atm K–1 mol–1)  320 K

p = 
1 –1(5.0 mol) (0.0821 L atm K mol ) 320 K

1.0 L

–

p = 131.3 atm.

5.3

1. Low pressure and high temperature.

2. b

3. u
rms

=
3RT

M

=
–1 –1

–1

3 (8.314 Jk mol ) (293 K)

(0.048 kg mol )

=
2 2 1 1

1

(8.314 Kg m s K mol ) (293 K)

0.048 Kg mol

− − −

−

= 390.3 ms–1

4. Z = mpV

RT
 = where V

m
 = molar volume

Z is compressibility factor.

5.4

1. (i) C; (ii) A; (iii) B

2. (i) Air (ii) Liquid.

3. B > C > A
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5.5

1. (i) more

(ii) increases

(iii) convex; concave

(iv) stronger

(v) weaker

2. (i) N m–1; (ii) N m–2 s

3. Molecules in the surface of a liquid have higher energy due to an inward force
on them. Therefore liquids tend to have minimum number of molecules in the
surface or have minimum surface area.


