COMPOUNDS OF CARBON CONTAINING NITROGEN

In the previous lesson, you have studied the chemistry of organic compounds containing oxygen atom as a part of the functional group. Now, you will learn about organic compounds containing nitrogen atom as a part of the functional group. An historical importance can be associated with these compounds as the first ever organic compound synthesised in the laboratory was urea which contains nitrogen. Nitrogen containing compounds have wide applications in our daily life. They form a part of dyes, drugs, fertilizers, alkaloids, proteins, etc. Only two classes of nitrogen containing compounds, viz. amines and nitro compounds are discussed in this lesson. First, the IUPAC nomenclature of amines has been explained followed by their preparation and chemical properties. The difference in the basicities of aliphatic and aromatic amines has also been described. Finally, the chemistry of nitro compounds is briefly discussed.

OBJECTIVES

After reading this lesson, you will be able to:

- classify amines as primary, secondary, or tertiary amines;
- write the IUPAC names of amines and nitro compounds;
- describe the general methods of preparation, properties and uses of primary amines;
- explain the relative basicities of primary, secondary and tertiary aliphatic amines and compare them with the basicities of ammonia and aromatic amines;
- differentiate primary, secondary and tetracy amines;
- discuss the important reactions of diazonium salts and explain their utility in synthesis of organic compounds;
- describe the methods of preparation of nitro compounds;
• discuss important reactions of nitro compounds, and
• list important uses of nitro compounds.

28.1 AMINES

Amines are derivatives of ammonia (NH$_3$) in which one or more hydrogen atoms are replaced by alkyl or aryl groups. Amines are classified into three different types as primary (1°), secondary (2°) and tertiary (3°) depending on the number of hydrogen atoms replaced by alkyl or aryl groups. In primary amines, only one alkyl or aryl group is attached to the nitrogen atom. In secondary amines, two alkyl or aryl groups are attached to the nitrogen while tertiary amines contain three alkyl or aryl groups attached to the nitrogen atom.

This is illustrated below.

\[
\begin{align*}
\text{R–N–H} & \quad \text{H} \\
\text{R–N–H} & \quad \text{R} \\
\text{R–N–R} & \quad \text{R}
\end{align*}
\]

A primary amine \hspace{1cm} A secondary amine \hspace{1cm} A tertiary amine

If four alkyl groups are attached to the nitrogen atom, then the quaternary ammonium ion or salt is formed.

\[
\begin{align*}
\left[\text{R–N–R} \right]^{+} & \quad \left[\text{X}^{-} \right] \\
\text{A quaternary ammonium salt}
\end{align*}
\]

Structure of Amines

The nitrogen atom of amines is approximately sp^3 hybridised. The three alkyl groups or hydrogen atoms occupy the three corners of the tetrahedron while the unshared pair of electrons is directed towards the other corner of the tetrahedron.

If we consider the three groups attached to the nitrogen as R$_1$, R$_2$ and R$_3$ then the shape of the molecule can be described as trigonal pyramidal. These three groups could be either alkyl groups or hydrogen atoms. Accordingly, the amine is called primary, secondary or tertiary,
However, if we consider lone pair of electrons also as a group attached to the nitrogen, then the geometry of the molecule is called tetrahedral. The bond angles R–N–R are close to the tetrahedral angle of 109.5°.

The amino group in aromatic amines is directly bonded to the benzene ring. Aromatic amines are aryl derivatives of ammonia. The parent aromatic amine is known as aniline.

\[\text{Aniline} \]

28.2.1 IUPAC Nomenclature of Amines

Similar to other classes of compounds which you have studied, amines can also be named according to the IUPAC system. In case of primary aliphatic amines, the longest continuous chain of carbon atoms determines the root name of the compound. The ending –e in the name of the corresponding alkane is changed to-amine. The other substituents along the carbon chain are given numbers. This is illustrated by the following examples.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IUPAC name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃NH₂</td>
<td>Methanamine</td>
<td>Methyl amine</td>
</tr>
<tr>
<td>CH₂CH₂NH₂</td>
<td>Ethanamine</td>
<td>Ethyl amine</td>
</tr>
<tr>
<td>CH₂CH₂CH₂NH₂</td>
<td>Propan-1-amine</td>
<td>Propyl amine</td>
</tr>
<tr>
<td>CH₂CH₂CH₂NH₂</td>
<td>2-Methyl propan-1-amine</td>
<td>—</td>
</tr>
<tr>
<td>CH₂CH₂CH₂NH₂</td>
<td>Benzenamine</td>
<td>Aniline</td>
</tr>
</tbody>
</table>

Secondary and tertiary amines are named by using the prefix N for each substituent on the nitrogen atom.
Compounds of Carbon Containing Nitrogen

MODULE - 7
Chemistry of Organic Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>IUPAC name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}) (\text{CH}_3) – (\text{N}) – (\text{CH}_3)</td>
<td>(N)-Methylmethanamine</td>
<td>Dimethylamine</td>
</tr>
<tr>
<td>(\text{H}) (\text{CH}_3) – (\text{N}) – (\text{CH}_2) – (\text{CH}_3)</td>
<td>(N)-Methylethanamine</td>
<td>Ethylmethylamine</td>
</tr>
<tr>
<td>(\text{CH}_3) (\text{CH}_3 \text{CH}_2) – (\text{N}) – (\text{CH}_2 \text{CH}_2) – (\text{CH}_3)</td>
<td>(N)-Ethyl-(N)-methylpropan-1-amine</td>
<td>—</td>
</tr>
</tbody>
</table>

The IUPAC names of other aromatic amines are given as derivatives of aniline shown below:

<table>
<thead>
<tr>
<th>Compound</th>
<th>IUPAC name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_2) (\text{Cl})</td>
<td>2-Chloroaniline</td>
<td>(o)-Chloroaniline</td>
</tr>
<tr>
<td>(\text{NH}_2) (\text{NO}_2)</td>
<td>4-Nitroaniline</td>
<td>(p)-Nitroaniline</td>
</tr>
<tr>
<td>(\text{NH}_2) (\text{CH}_3)</td>
<td>2-Methylaniline</td>
<td>(o)-Toluidine</td>
</tr>
</tbody>
</table>

INTEXT QUESTIONS 28.1

1. Classify the following as primary, secondary, tertiary amines and quaternary ammonium salts:

 (i) \(\text{CH}_3 \) \(\text{CH}_3 \) \(\text{CH}-\text{C} \) – \(\text{NH}_2 \)

 (ii) \(\text{CH}_3 \) \(\text{CH}_3 \) \(\text{CH}-\text{N} \) – \(\text{CH}_2\text{CH}_3 \)

 (iii) \(\text{CH}_3 \) \(\text{N} \) – \(\text{CH}_2\text{CH}_3 \)

 (iv) \(\text{CH}_3 \) \(\text{N} \) – \(\text{CH}_2\text{CH}_3 \) – \(\text{H} \)
2. Write IUPAC names for the following amines:

(i) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2 \)

(ii) \(\text{CH}_3 - \text{N} - \text{CH}_2\text{CH}_3 \)

(iii) \(\text{CH}_3 - \text{N} - \text{CH}_2\text{CH}_2\text{CH}_3 \)

(iv) \(\text{CH}_3\text{CHCH}_2\text{CH}_3\text{NH}_2 \)

(v) \(\text{CH}_3\text{CH}_2\text{CH} - \text{NH}_2 \)

(vi) \(\text{H}_3\text{C} - \text{N} - \text{CH}_3 \)

\[\text{Cl}^- \]

28.2.2 Preparation of Amines

Several methods are available for the preparation of primary aliphatic and aromatic amines. In this section, you will learn some of the methods which are generally used for their preparation.

(i) From alkyl halides

Alkyl halides react with ammonia to form primary amines.

\[\text{R} - \text{X} + 2 \text{NH}_3 \rightarrow \text{R NH}_2 + \text{NH}_4\text{X} \]

The primary amine so formed may further react to give a secondary amine, tertiary amine or a quaternary ammonium salt. So in order to get good yield of the primary amine, the reaction is carried out using excess of ammonia. For example, bromoethane on reaction with excess of ammonia gives ethanamine.

\[\text{C}_2\text{H}_5\text{Br} + 2 \text{NH}_3 \rightarrow \text{C}_2\text{H}_5\text{NH}_2 + \text{NH}_4\text{Br} \]

Bromoethane \hspace{1cm} Ethanamine
(ii) **By reduction of nitriles (cyanides), amides and nitro compounds**

Compounds containing cyano, amido or nitro groups can be reduced into the corresponding primary amines.

Nitriles can be reduced by hydrogen in the presence of platinum catalyst or by sodium in presence of ethanol to corresponding primary amines. For example, propanenitrile (cyano ethane) on reduction gives propan-l-amine.

\[
\text{CH}_3\text{CH}_2\text{C}≡\text{N} \xrightarrow{\text{H}_2/\text{Pt} \text{ or Na/C}_2\text{H}_5\text{OH}} \text{CH}_3\text{CH}_2\text{CH}_2\text{–NH}_2
\]

Propanenitrile Propan-l-amine

Similarly, amides are reduced by LiAlH₄ to primary amines having same number of carbon atoms as in the starting amide. For example, ethanamide gives ethanamine on reduction.

\[
\text{CH}_3\text{–C–N H}_2 \xrightarrow{\text{LiAlH}_4} \text{CH}_3\text{CH}_2\text{–NH}_2
\]

Ethanamide Ethanamine

Reduction of nitro compounds can be carried out by using hydrochloric acid and a metal such as Sn or Fe. They can also be reduced with hydrogen in presence of Ni or Pt as catalyst. Such a reduction of nitrobenzene by any of these methods provides aniline.

\[
\text{NO}_2 \xrightarrow{\text{Sn/HCl or H}_2/\text{Pt}} \text{NH}_2
\]

Nitrobenzene Aniline

(iii) **By Hofmann bromamide reaction**

Aliphatic amides on treatment with bromine and a strong base like potassium hydroxide are converted into primary amines having one carbon less than those present in the starting amide.

\[
\text{R – C – NH}_2 + \text{Br}_2 + 4\text{KOH} \rightarrow \text{R – NH}_2 + \text{K}_2\text{CO}_3 + 2\text{KBr} + 2\text{H}_2\text{O}
\]

Amide Amine

Thus, ethanamine is obtained by treating propanamide with bromine and KOH.

\[
\text{CH}_3\text{CH}_2\text{–C–NH}_2 + \text{Br}_2 + 4\text{KOH} \rightarrow \text{CH}_3\text{CH}_2\text{–NH}_2 + 2\text{KBr} + \text{K}_2\text{CO}_3 + 2\text{H}_2\text{O}
\]

Propanamide Ethanamine
28.2.4 Physical Properties of Amines

Aliphatic amines containing up to three carbon atoms are gases whereas higher amines are liquids. Some higher aromatic amines are even solids. Methyl and ethyl amines have smell like ammonia. Amines have higher boiling points than the corresponding hydrocarbons because they form hydrogen bonds amongst themselves. Lower amines are soluble in water and the solubility decreases with the increase in size of the alkyl group. This solubility is because of the presence of hydrogen bonding between the amino group and water molecules. All amines are soluble in organic solvents like benzene, alcohol, ether etc.

28.2.5 Chemical Properties of Amines

(i) Basic Character

Amines are basic in nature due to the presence of a lone pair of electrons on nitrogen. You know that the strength of a base depends upon the availability of electrons. Basicities of amines can be compared with respect to ammonia, by comparing the availability of pair of electrons on nitrogen. Ammonia and amines, both when dissolved in water, attract a proton from water to form an ammonium or alkylammonium ion, respectively, and a hydroxide ion.

\[
\begin{align*}
\text{NH}_2^+ + \text{H}^+ + \text{OH}^- & \rightarrow \text{NH}_3^+ + \text{OH}^- \\
\text{R} - \text{NH}_2^+ & \rightarrow \text{R} - \text{NH}_3^+ + \text{OH}^-
\end{align*}
\]

Ammonium ion

Alkylammonium ion

You know that aliphatic amines contain one or more alkyl groups in place of hydrogen atoms of ammonia. Since alkyl groups are electron releasing groups, they increase the electron density on nitrogen. This makes the lone pair of electrons on nitrogen atom to be easily available for sharing and hence, this increases the basicity of the amine. So, we expect that the basicities of the amines would increase as we move from primary to secondary to tertiary amines.

But the order of the basicities has been found to be

\[
\text{R} - \text{NH}_2 \quad < \quad \text{R}_2 \text{NH} \quad > \quad \text{R}_3 \text{N}
\]

Primary (1st) Secondary (2nd) Tertiary (3rd)

The tertiary amines are less basic than secondary amines. The reason is that a tertiary amine, though has three alkyl groups which can donate electrons to the nitrogen atom but they also cause crowding (also called steric hinderance) around nitrogen. This hinders the protonation at nitrogen atom and hence, reduces the basicity.
The aromatic amines are weaker bases than ammonia because the aromatic ring is electron withdrawing. It reduces the electron density at nitrogen and makes the aromatic amines less basic. So we can express the basic character of aliphatic and aromatic amines as shown below.

Aromatic amines < Ammonia < Aliphatic amines

(ii) **Alkylation**: Primary amines react with alkyl halides to give secondary amines. The reaction may continue further to form a tertiary amine and a quaternary ammonium salt. For example, the reaction of ethanamine with bromomethane proceeds as shown below.

\[
\begin{align*}
\text{CH}_3\text{CH}_2 - \text{N} - \text{H}_2 + \text{CH}_3\text{Br} & \rightarrow \text{CH}_3\text{CH}_2 - \text{NH} - \text{CH}_3 \\
\text{Ethanamine} & \quad \text{Bromomethane} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3\text{Br} \\
\text{CH}_3\text{CH}_2 - \text{N} - \text{CH}_3 \\
\text{CH}_3 \\
\text{N, N- Dimethylethanamine} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3\text{Br} \\
\text{CH}_3\text{CH}_2 - \text{N} - \text{CH}_3 \\
\text{CH}_3 \\
\text{Ethyltrimethylammonium bromide} \\
\end{align*}
\]

(iii) **Acylation**: Primary amines on reaction with acid chlorides or acid anhydrides give \(N\)-substituted amides.

\[
\begin{align*}
\text{R} - \text{NH}_2 + \text{R'} - \text{C} - \text{Cl} & \rightarrow \text{R} - \text{NH} - \text{C} - \text{R'} + \text{HCl} \\
\text{Primary amine} & \quad \text{Acid chloride} & \quad \text{Substituted amide} \\
\end{align*}
\]

For example, aniline on reaction with ethanoyl chloride (acetyl chloride) gives acetanilide.

\[
\begin{align*}
\text{NH}_2 \\
\text{Aniline} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3\text{C} - \text{Cl} \\
\text{Ethanoyl chloride} \\
\end{align*}
\]

\[
\begin{align*}
\text{NH} - \text{C} - \text{CH}_3 \\
\text{Acetanilide} \\
\end{align*}
\]
Compounds of Carbon Containing Nitrogen

(iv) **Carbylamine reaction**: When a primary amine is heated with chloroform in the presence of alcoholic potassium hydroxide, then the corresponding isocyanide is formed. Isocyanides are also known as **carbylamines**, hence this reaction is called as **carbylamine reaction**. For example, aminoethane on undergoing this reaction, gives ethyl carbylamine.

\[
\text{CH}_3\text{CH}_2\text{–NH}_2 + \text{CHCl}_3 + 3\text{KOH} \xrightarrow{\Delta} \text{CH}_3\text{CH}_2\text{ N} = \text{C} + 3\text{KCl} + 3\text{H}_2\text{O}
\]

Ethylamine Ethyl carbylamine

Isocyanides give a very offensive odour, so this reaction is also used as a test for primary amines.

(v) **Reaction with nitrous acid**: Primary aromatic amines react with nitrous acid to give diazonium salts and this reaction is known as **diazotisation**. Nitrous acid is an unstable compound and cannot be stored, so it is prepared during the reaction by mixing sodium nitrite and hydrochloric acid. The reaction is specifically carried out at low temperature between 273 – 278 K. For example, aniline reacts with nitrous acid to give benzene diazonium chloride.

\[
\text{NH}_2\text{ } + \text{NaNO}_2 + 2\text{HCl} \xrightarrow{273-278K} \text{Cl}^-\text{N}^+\text{C}_{6}\text{H}_5 + \text{NaCl} + 2\text{H}_2\text{O}
\]

Aniline Benzene diazonium chloride (a diazonium salt)

Primary aliphatic amines also react in a similar way but the diazonium salts formed are unstable and decompose to give alcohols and nitrogen gas. Thus, ethanamine gives ethanol when subjected to this reaction.

\[
\text{CH}_3\text{CH}_2\text{–NH}_2 + \text{NaNO}_2/\text{HCl} \xrightarrow{\text{H}_2\text{O}} \text{[CH}_3\text{CH}_2\text{ N}^+\text{Cl}^-]\xrightarrow{\text{H}_2\text{O}} \text{CH}_3\text{CH}_2\text{–OH} + \text{N}_2 + \text{HC}
\]

Ethanamine Ethyldiazonium chloride Unstable diazonium salt Ethanol

(vi) Primary amines undergo condensation with aldehydes or ketones to form **imines**. These products are also called **Schiff’s bases**. The reaction can be shown as follows:

\[
\text{R’} = \text{C = O} + \text{H}_2\text{N} – \text{R} \xrightarrow{\text{an amine}} \text{R’} = \text{C = N} – \text{R}
\]

a Schiff’s base
Compounds of Carbon Containing Nitrogen

(vii) **Ring substitution in aromatic amines:** You know that – NH₂ group is a strong activating and ortho-, para- directing group for electrophilic aromatic substitution reactions. This directive influence can be explained by the following resonating structures of aniline.

![Resonance structures of aniline](image)

As a result of this resonance, the electron density is more at ortho- and para- positions; hence, the electrophilic substitution occurs at these positions.

Some important ring substitution reactions of aromatic amines are halogenation, nitration and sulphonation.

(a) **Halogenation:** Aniline on treatment with an aqueous solution of bromine gives 2,4,6 - tribromoaniline.

![2,4,6-Tribromoaniline](image)

Aniline is very reactive and all the three hydrogen atoms at ortho- and para- positions are substituted with bromine atoms.

(b) **Nitration:** Nitration of aniline is carried out on the acetylated amine (acetanilide) rather than on the free amine itself. There are two reasons for this.

(i) The free amine is very susceptible to oxidation and thus much of it is lost in the form of a black-sticky material which is formed as result of its oxidation.

(ii) The free amine is very reactive but acetyl the group protects it and reduces its reactivity.
The nitration of aniline with the protection of the amino group is shown below:

\[
\begin{align*}
\text{Aniline} & \xrightarrow{\text{CH}_2\text{Cl}} \text{Acetanilide} & \text{p-Nitroacetanilide} & \text{p-Nitroaniline} \\
\text{NH}_2 & \xrightarrow{\text{O}} \text{NH} – \text{C} – \text{CH}_3 & \text{NO}_2 & \text{NO}_2
\end{align*}
\]

The first step consists of acetylation of the amino group in aniline. The conversion of \(-\text{NH}_2\) to \(\text{–NH} – \text{C} – \text{CH}_3\), lowers the activity of \(-\text{NH}_2\) group because of electron withdrawal by \(-\text{C} – \text{CH}_3\). This step is followed by nitration (conc. \(\text{HNO}_3 / \text{H}_2\text{SO}_4\)) which gives mainly the \(\text{p-nitroacetanilide}\). This, ‘on acid hydrolysis’ yields the desired product \(\text{p-nitroaniline}\).

(c) **Sulphonation**: Sulphonation is carried out in the presence of sulphuric acid. The amino group in aniline is a basic group. Therefore, an acid-base reaction takes place to form anilinium hydrogen sulphate salt. This salt undergoes rearrangement at a high temperature to give sulphanilic acid.

\[
\begin{align*}
\text{Aniline} & \xrightarrow{\text{H}_2\text{SO}_4} \text{Anilinium} & \xrightarrow{455 – 475 \text{ K}} \text{Sulphanilic acid} \\
\text{NH}_2 & \text{HSO}_3^- & \text{HSO}_4^2- & \text{NH}_3 \text{SO}_3^- & \text{NH}_3
\end{align*}
\]

28.2.6 Uses of Amines

Amines are very useful compounds. They are used for a variety of purposes in the laboratory as well as in the industry. Some aliphatic amines are used as solvents and intermediates in drug synthesis. The quaternary ammonium salts derived from long chain aliphatic tertiary amines are widely used as detergents. Aromatic amines e.g. aniline and its derivatives, are used for the production of dyes, drugs and photographic developers. 1,4-Diaminobenzene is the main ingredient of all hair dyes. Many dithiocarbamates which are the compounds derived from primary amines, are used as herbicides. Diazonium salts obtained from primary aromatic amines form the basis of synthesis of many other organic compounds.
28.2.7 Identification of Primary, Secondary and Tertiary amines

Primary, secondary and tertiary amines can be distinguished from each other using the Hinsberg test. In this test, a small amount of the amine and benzene sulphonyl chloride is shaken with excess of potassium hydroxide. After allowing the reaction to take place, the mixture is acidified. The following is observed for different types of amines.

The primary amines react with benzene sulphonyl chloride to form \(N\)-substituted benzene sulphonamide which in turn forms water soluble potassium salt, with excess of potassium hydroxide.

This clear solution on acidification gives water-insoluble \(N\)-substituted sulphonamide which precipitates out.

\[
\begin{align*}
\text{Primary amine} & \quad + \quad \text{Cl} & \quad \xrightarrow{\text{OH}^- \quad \text{(HCl)}} & \quad \text{Water insoluble sulphanamide} \\
R - N - H & \quad + \quad \text{Cl} - & \quad \xrightarrow{\text{OH}^- \quad \text{(HCl)}} & \quad \text{Water soluble potassium salt (clear solution)}
\end{align*}
\]

The secondary amines react with benzene sulphonyl chloride in aqueous potassium hydroxide to give insoluble \(N, N\)-disubstituted sulphonamides which form a precipitate. These sulphonamides are not soluble in aq. KOH because they do not have an acidic hydrogen. Hence, on further acidification also, there is no change in the reaction mixture.

\[
\begin{align*}
\text{Secondary amine} & \quad + \quad \text{Cl} & \quad \xrightarrow{\text{OH}^- \quad \text{(HCl)}} & \quad \text{Water insoluble} \\
R - N - H & \quad + \quad \text{Cl} - & \quad \xrightarrow{\text{OH}^- \quad \text{(HCl)}} & \quad \text{Water insoluble}
\end{align*}
\]

In case of tertiary amines, if the amine is water insoluble then no change will take place on addition of benzene sulphonyl chloride and aq. KOH as no reaction will take place. However, when we acidify this mixture, the tertiary amine will dissolve as a water soluble salt will form.
INTEXT QUESTIONS 28.2

1. Predict the major product of the following reactions:

 (a) \[\text{CONH}_2 + \text{Br}_2 + 4\text{KOH} \rightarrow \]

 (b) \[\text{CH}_3\text{CH}_2\text{NH}_2 \xrightarrow{\text{NaNO}_2/\text{HCl}} \]

 (c) \[\text{NH}_3 \xrightarrow{\text{NaNO}_2/\text{HCl}} \text{at 273–278 K} \]

 (d) \[\text{NH}_2 + \text{Br}_2(\text{aq}) \rightarrow \]

 (e) \[\text{NH}_2 \xrightarrow{(i) \text{H}_2\text{SO}_4 \ (ii) \text{Heat}} \]

 (f) \[\text{NO}_3 \xrightarrow{\text{Fe/\text{HCl}}} \]

2. Why is aniline very reactive towards bromination?

3. Name the test which uses potassium hydroxide and chloroform for identifying a primary amine.

4. Can aniline be nitrated directly?

5. How will you obtain sulphanilic acid from benzene?

28.3 DIAZONIUM SALTS: REACTIONS AND IMPORTANCE IN SYNTHETIC CHEMISTRY

Most of the arenediazonium salts (formed from aromatic amines) are unstable at temperatures above 5–10°C. These salts explode when dry.
Therefore, many of their further reactions are carried out without isolating them.

The reactions of diazonium salts are very important synthetically because the diazonium group can be replaced by a variety of other groups such as –F, –Cl, –Br, –I, –CN, –OH and –H. These reactions are given below.

(i) The Sandmeyer reaction

In this reaction, the arene diazonium salts are reacted with cuprous bromide, cuprous chloride and cuprous cyanide in the presence of HBr, HCl and HCN, respectively. Some of the examples of Sandmeyer reaction are given below: You can see in these reactions that the diazonium group is replaced by –Br, –Cl and –CN group.

(ii) Replacement of diazonium group by –I group

In this reaction, the dizonium salt is treated with potassium iodide to give the product in which diazonium group has been replaced by –I group.
(iii) Replacement of diazonium group by –F group
Here, the diazonium salt is first treated with fluoroboric acid (HBF₄) and the diazonium fluoroborate precipitated is isolated and dried. It is then heated until it starts decomposing to give the aryl fluoride product.

$$\text{N}_2\text{Cl}^+ + \text{HBF}_4 \xrightarrow{\text{HNO}_2, \text{H}^+} \text{N}_2\text{BF}_4 \xrightarrow{\Delta} \text{F} + \text{BF}_3 + \text{N}_2$$

(iv) Replacement of dizonium group by –OH group
If cuprous oxide is added to a dilute solution of the diazonium salt containing a large excess of cupric nitrate, then the diazonium group is replaced by a hydroxyl group.

$$\text{N}_2\text{HSO}_4^- + \text{Cu}_2\text{O} \xrightarrow{\text{Cu}^{2+}, \text{H}_2\text{O}} \text{OH}$$

(v) Replacement of diazonium group by a hydrogen atom
The reaction of diazonium salts with hypophosphorous acid (H₃PO₂) replaces the diazonium group by a hydrogen atom.

$$\text{N}_2\text{Cl}^- + \text{H}_3\text{PO}_2 \xrightarrow{\text{H}_2\text{O}, 25^\circ\text{C}} \text{N}_2 + \text{H}_3\text{PO}_3 + \text{HCl}$$

(vi) Coupling Reactions of Arenediazonium Salts
Arenediazonium salts react with phenols and tertiary aryl amines to give azo compounds which are known azo dyes. This reaction is called diazo coupling reaction.

$$\text{N}_2\text{Cl}^- + \text{OH} \xrightarrow{\text{O}^\circ\text{C}, \text{NaOH}, \text{H}_2\text{O}} \text{OH}$$

Hence, by using the above reactions, we can synthesize a variety of compounds.
Nitro compounds are those derivatives of hydrocarbons in which a hydrogen atom is replaced by a nitro (–NO₂) group. They may be aliphatic or aromatic. Nitroalkanes are divided into primary (1°), secondary (2°) or tertiary (3°) nitro alkanes depending upon the attachment of nitro group to primary, secondary or tertiary carbon atom, respectively.

\[
\begin{align*}
\text{H} & \quad \text{R} & \quad \text{R} \\
\text{R} - \text{C} - \text{NO}_2 & \quad \text{R} - \text{C} - \text{NO}_2 & \quad \text{R} - \text{C} - \text{NO}_2 \\
\text{H} & \quad \text{H} & \quad \text{R} \\
\text{p-nitroalkane} & \quad \text{sec-nitroalkane} & \quad \text{tert-nitroalkane}
\end{align*}
\]

28.4.1 IUPAC Nomenclature of Nitro Compounds

According to IUPAC system, nitro compounds are named by prefixing the word nitro before the name of the parent hydrocarbon. The number of nitro groups and their positions are suitably indicated as shown in some examples given below.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IUPAC Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃ – NO₂</td>
<td>Nitromethane</td>
</tr>
<tr>
<td>CH₃CH₂ – NO₂</td>
<td>Nitroethane</td>
</tr>
<tr>
<td>CH₃ CH CH₃ \ NO₂</td>
<td>2-Nitropropane</td>
</tr>
<tr>
<td>CH₃CH CH CH₃ \ NO₂CH₃</td>
<td>2-Nitro - 3- methylbutane</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrobenzene</td>
</tr>
<tr>
<td>NO₂</td>
<td>1, 3 - Dinitrobenzene (m - Dinitrobenzene)</td>
</tr>
</tbody>
</table>
28.4.2 Preparation of Nitro Compounds

(i) From alkyl halides: Nitroalkanes are prepared by heating an alkyl halide with aqueous ethanolic solution of silver nitrite. In this reaction, a small amount of isomeric alkyl nitrites ($R–O–N = O$) is also obtained.

\[R – X + AgNO_2 \rightarrow R – NO_2 + AgX \]

For example, bromoethane on reaction with silver nitrite gives nitroethane.

\[CH_3CH_2Br + AgNO_2 \rightarrow CH_3CH_2NO_2 + AgBr \]

(ii) By nitration of alkanes: Nitroalkanes can also be prepared by the nitration of alkanes in vapour phase. For this reaction, a mixture of the alkane and nitric acid is passed through a metal tube at about 680 K. This reaction always yields a mixture of compounds due to the cleavage of the starting alkane. For example, propane on nitration gives a mixture of following compounds.

\[CH_3CH_2CH_3 \xrightarrow{HNO_3, 680K} CH_3CH_2CH_2NO_2 + CH_3CH=CH_2 \]

1- Nitropropane
2- Nitropropane

(iii) By nitration of aromatic compounds: Aromatic nitro compounds are almost always prepared by direct nitration. For example, nitration of benzene gives nitrobenzene. The reaction is generally carried out with a mixture of concentrated nitric acid and concentrated sulphuric acid.

\[\text{Benzene} + HNO_3 \xrightarrow{H_2SO_4} \text{Nitrobenzene} \]

28.4.3 Physical Properties of Nitro Compounds

Nitroalkanes are colourless oily liquids in the pure state. They have pleasant smell. They possess higher boiling points than the corresponding alkanes because of their polar nature. Amongst the aromatic nitro compounds, nitrobenzene is a yellow liquid with the smell of bitter almonds. Most other aromatic nitro compounds are yellow crystalline solids. All the nitro compounds are heavier than water and insoluble in it. They are, however, soluble in organic solvents like alcohol, ether, benzene, chloroform etc.
28.4.4 Chemical Properties of Nitro Compounds

(i) **Reduction**: One of the important reactions of nitro compounds is reduction. Nitro compounds can be readily reduced to primary amines by a variety of reducing agents. For example, (a) hydrogen in presence of catalyst like nickel or platinum (b) a metal like tin or iron in presence of hydrochloric acid and (c) lithium aluminium hydride. Reduction of nitroethane and nitrobenzene provides ethanamine and aniline, respectively.

\[
\text{CH}_3\text{CH}_2 – \text{NO}_2 + 3\text{H}_2 \xrightarrow{\text{Ni}} \text{CH}_3\text{CH}_2 – \text{NH}_2 + 2\text{H}_2\text{O}
\]

Nitroethane Ethanamine

\[
\text{Sn} / \text{HCl} \rightarrow
\]

Nitrobenzene Aniline

Nitrobenzene on reduction in neutral medium, using zinc dust and ammonium chloride yields \(N\)-phenylhydroxylamine whereas its reduction in alkaline medium using zinc and sodium hydroxide yields azobenzene.

(ii) **Hydrolysis**: Primary nitroalkanes on reaction with dilute hydrochloric acid or sulphuric acid undergo hydrolysis to produce carboxylic acids and hydroxylamine.

\[
\text{RCH}_2 – \text{NO}_2 + \text{H}_2\text{O} \xrightarrow{\text{HCl}} \text{R} – \text{COOH} + \text{NH}_2\text{OH}
\]

A carboxylic acid Hydroxylamine

Secondary nitroalkanes on hydrolysis form ketones.

\[
2 \text{R}_2\text{CH} – \text{NO}_2 \xrightarrow{\text{HCl}} 2 \text{R} – \text{C} – \text{R} + \text{N}_2\text{O} + \text{H}_2\text{O}
\]

ketone
(iii) **Thermal decomposition** : Nitroalkanes decompose with explosion on heating. Advantage is taken of this reaction in the commercial use of nitroalkanes as explosives. It is due to the formation of large volume of gaseous products on heating which produce high pressure.

\[2 \text{CH}_3\text{NO}_2 \xrightarrow{\Delta} \text{N}_2 + 2 \text{CO}_2 + 3 \text{H}_2 \]

(iv) **Ring substitution in aromatic nitro compounds** : You know that –NO₂ group is a deactivating and *meta* - directing group for electrophilic substitution reactions. It is due to the electron withdrawing tendency of –NO₂ group. Thus, nitrobenzene on halogenation, nitration or sulphonation gives the *meta*-substituted products as shown below.

![Ring substitution in aromatic nitro compounds diagram]

28.4.5 Uses of Nitro Compounds

1. Nitroalkanes are used as solvents for rubber, cellulose acetate etc.
2. They are used as intermediates in the industrial production of explosives, detergents, medicines, amines etc.
3. Nitro compounds are also used as fuel in small engines and rockets.

INTEXT QUESTIONS 28.4

1. Write IUPAC names of the following :
 (a) \(\text{CH}_3\text{CHCH}_2\text{CH}_2\text{–NO}_2 \)
 (b) \(\text{CH}_3\text{CHCH}_2\text{CH}_2\text{CH}_3 \)
2. Write the product formed when 1,3-dinitrobenzene is treated with tin and hydrochloric acid.

3. Arrange the following compounds in increasing order of their reactivity towards halogenation.

4. Which reaction of nitroalkanes makes them suitable to be used as rocket fuel?

WHAT YOU HAVE LEARNT

- Amines are considered as derivatives of ammonia. They are classified as primary, secondary or tertiary based on how many alkyl groups have replaced the hydrogen atoms of ammonia.

- Reaction of alkyl halides with ammonia produces a mixture of primary, secondary or tertiary amines along with quaternary ammonium salts.

- Reduction of nitriles, amides and nitro compounds gives amines having the same number of carbon atoms.

- In Hofmann bromamide reaction, the amine formed has one carbon less than the starting amide.

- Both aliphatic and aromatic amines are basic in nature. But aromatic amines are less basic and aliphatic amines are more basic than ammonia. An aliphatic secondary amine is more basic than primary and tertiary amines.

- Primary amines can be differentiated from secondary and tertiary amines by carbylamine reaction.

- Aliphatic primary amines undergo diazotisation to form alcohols whereas aromatic primary amines form diazonium salts.
The amino group (–NH₂) is an activating and ortho-, para-directing group towards the electrophilic aromatic substitution reactions.

Nitroalkanes are obtained by the reaction of alkyl halides with alcoholic silver nitrite.

Nitrobenzene is obtained by the direct nitration of benzene with conc. HNO₃ in the presence of conc. H₂SO₄.

Primary nitroalkanes are hydrolysed in acidic medium to give carboxylic acids whereas secondary nitroalkanes give ketones.

All nitro compounds are reduced into amino compounds by (i) hydrogen in presence of catalyst or (ii) tin or iron in presence of hydrochloric acid.

Nitro group is deactivating and meta-directing group towards electrophilic aromatic substitution reactions.

TERMINAL EXERCISE

1. Write the structural formula of the following compounds:
 (i) 2-Methylpropan - 2-amine
 (ii) Butan - 2-amine
 (iii) N-Ethyl - N-methylbutan - 1-amine
 (iv) 2-Methyl - 2-nitropropane
 (v) 4-Nitrotoluene

2. What do you understand by diazotisation? Write the product of following reactions.

 (i) \[\text{NH}_2 \quad \text{Ar} \quad \text{CH}_3 \quad \xrightarrow{\text{NaNO}_2/\text{HCl}} \quad 273–278 \text{ K} \]

 (ii) \[\text{NH}_3 \quad \text{Ar} \quad \text{NO}_2 \quad \xrightarrow{\text{NaNO}_2/\text{HCl}} \quad 273–278 \text{ K} \]

 (iii) \[\text{CH}_3–\text{CH}_2–\text{CH}_2–\text{NH}_2 \quad \xrightarrow{\text{NaNO}_2/\text{HCl}} \quad 273–278 \text{ K} \]

3. How will you prepare butan-1-amine starting from a suitable amide? Name the reaction involved.
4. What different reagents can be used for the following conversion?

\[
\text{NO}_2 \quad \rightarrow \quad \text{NH}_2
\]

5. Arrange the following amines in increasing order of their basicities:
 - Ethanamine,
 - N-Methylethanamine,
 - Aniline

6. How will you prepare sulphanilic acid from nitrobenzene?

7. What happens when ethanamine is treated with excess of chloroethane?

8. Write the reaction sequence to convert nitromethane into ethanamine.

9. How will you prepare \textit{para}-bromoaniline from nitrobenzene? Can this compound be obtained by direct bromination of aniline with aqueous solution of bromine? Explain.

10. Complete the following reactions:

 (i) \[
 \text{CH}_3\text{CH} - \text{NO}_2 \quad \text{dil. HCl} \quad \rightarrow \quad \text{?}
 \]

 (ii) \[
 \text{CH}_3\text{CH}_2\text{CH}_2\text{CONH}_2 \quad \text{Br}_2/\text{KOH} \quad \rightarrow \quad \text{?} \quad \text{NaNO}_2/\text{HCl} \quad \text{273–278 K} \quad \rightarrow \quad \text{?}
 \]

 (iii) \[
 \text{HNO}_3/\text{H}_2\text{SO}_4 \quad \text{heat} \quad \rightarrow
 \]

 (iv) \[
 \text{CH}_3 - \text{CH} - \text{CH}_3 \quad \text{CHCl}_3/\text{KOH} \quad \rightarrow \quad \text{?}
 \]

 (v) \[
 \text{CH}_3\text{CH}_2\text{CH}_2- \text{Br} + \text{AgNO}_2 \quad \text{alcohol} \quad \rightarrow \quad \text{?}
 \]

ANSWERS TO INTEXT QUESTIONS

28.1

1. (i) Primary amine
 (ii) Secondary amine
 (iii) Secondary amine
 (iv) Tertiary amine
 (v) Primary amine
 (vi) Quaternary ammonium salt
Compounds of Carbon Containing Nitrogen

2. (i) Butan-1-amine
 (ii) \(N, N\)-Dimethylethanamine
 (iii) \(N\)-Methylbutan-1-amine
 (iv) Butan-2-amine
 (v) 3-Bromoaniline
 (vi) 2-Ethylaniline

28.2

1. (i) \(\text{CH}_3\text{CH}_2\text{NH}_2\)
 (ii) \(\text{CH}_3\text{CH}_2\text{OH}\)

2. Aniline is very reactive towards bromination because the \(-\text{NH}_2\) group is a highly activating group.

3. Carbylamine test.

4. No

5.

 \[\begin{align*}
 \text{Benzene} & \xrightarrow{\text{HNO}_3, \text{H}_2\text{SO}_4} \text{NO}_2 \quad \xrightarrow{\text{Sn/\text{HCl}}} \text{NH}_2 \quad \xrightarrow{\text{H}_2\text{SO}_4} \\
 \text{NH}_3\text{HSO}_4^- & \xrightarrow{455-475 \text{ K}} \text{SO}_2\text{H} \quad \text{Sulphanilic acid}
 \end{align*}\]
28.3

1. (i) 3-Methyl-1-nitrobutane
 (ii) 2-Nitopentane
 (iii) 4-Nitrotoluene
 (iv) 2-Chloronitrobenzene
 (v) 1,4-Dinitropentane

![Nitro group](image1)

2. ![Nitro group](image2)

3. ![Nitro group](image3)

4. Nitroalkanes decompose on heating and produce large volume of gases. The formation of gaseous products at high pressure produces the thrust which is necessary for the movement of rocket.