26

DIFFERENTIATION

Derivative of A Function

The limiting process indicated by $\lim _{\delta X \rightarrow 0} \frac{\delta y}{\delta x}=$ $\lim _{\delta X \rightarrow 0} \frac{F(X+\delta X)-F(X)}{\delta X}$ is a mathematical operation. This mathematical process is known as differentiation and it yields a result called a derivative.
(2) A function whose derivative exists at a point is said to be derivable at that point.
(3) It may be verified that if $f(x)$ is derivable at a point $x=a$, then, it must be continuous at that point. However, the converse is not necessarily true.
4) The symbols Δx and h are also used in place of δx
(5) If $y=f(x)$, then $\frac{d Y}{d X}$ is also denoted by y_{1} or y^{\prime}

Velocity as Limit

Velocity $=\lim _{\delta t \rightarrow 0} \frac{f(t+\delta t)-f(t)}{\delta t}=\frac{d s}{d t}$

Geometrical Interpretation of dy/dx

Derivative of Constant Function

The derivative of a constant is zero.

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

Derivatives of Sum And Difference of Functions

I. $\quad h^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
(SUM Rule)
II. $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)$
(Difference Rule)
III. $\frac{d[f(x) g(x)]}{d x}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$
(Product Rule)
IV. $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
(Quotient Rule)
V. $\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$
(Chain Rule)

Check Yourself

1. If $y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)$, then $d y / d x$ equals-
(A) -1
(B) 1
(C) x
(D) $\sqrt{\mathrm{x}}$
2. If $x \sqrt{1+y}+y \sqrt{1+x}=0$, then $\frac{d y}{d x}$ equals -
(A) $\frac{1}{(1+x)^{2}}$
(B) $-\frac{1}{(1+x)^{2}}$
(C) $\frac{1}{1+\mathrm{x}^{2}}$
(D) None of these
3. If $x^{y} y^{x}=1$, then $\frac{d y}{d x}$ equals -
(A) $\frac{x(y+x \log y)}{y(x+y \log x)}$
(B) $-\frac{x(x+y \log y)}{y(y+x \log x)}$
(C) $\frac{y(y+x \log y)}{x(x+y \log x)}$
(D) $-\frac{y(y+x \log y)}{x(x+y \log x)}$
4. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, then the value of $d y / d x$ is -
$\begin{array}{ll}\text { (A) } \frac{\sqrt{1-x^{2}}}{\sqrt{1-y^{2}}} & \text { (B) } \frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}\end{array}$
(C) $\quad-\frac{\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1-\mathrm{y}^{2}}}$
(D) $-\frac{\sqrt{1-\mathrm{y}^{2}}}{\sqrt{1-\mathrm{x}^{2}}}$
5. If $\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}-4}{\mathrm{x}^{2}-1}$ and $\mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{p}}{\left(\mathrm{x}^{2}-1\right)^{2}}$, then p equals-
(A) $x^{2}-8 x-2$
(B) $-2 x^{2}+8 x+2$
(C) $4 x+2$
(D) $-2 x^{2}+8 x-2$
6. If $y=\frac{x}{(x+5)}$, then $\frac{d x}{d y}$ equals-
(A) $\frac{5}{(1-y)^{2}}$
(B) $\frac{5}{(1+y)^{2}}$
(C) $\frac{1}{(1-y)^{2}}$
(D) None of these
7. If $y=\sqrt{\frac{1-x}{1+x}}$, then $\frac{d y}{d x}$ equals-
(A) $\frac{y}{1-x^{2}}$
(B) $\frac{y}{x^{2}-1}$
(C) $\frac{y}{1+x^{2}}$
(D) $\frac{\mathrm{y}}{\mathrm{y}^{2}-1}$
8. If $f(x)=\frac{2 x^{2}-c}{x-2}$ and $f^{\prime}(1)=0$, then the value of c is-
(A) 2
(B) 4
(C) 6
(D) 8
9. If $y=\frac{x+c}{1+x^{2}}$, then the value of $x y$ where $\frac{d y}{d x}=0$ is-

Hint to Check Yourself

$1 \mathrm{~A} \quad 2 \mathrm{~B} \quad 3 \mathrm{D} \quad 4 \mathrm{~B} \quad 5 \mathrm{D}$
6 A $7 \mathrm{~B} \quad 8 \mathrm{C} \quad 9 \mathrm{~A} \quad 10 \mathrm{~B}$
5. If $y=\left(1+\frac{1}{x}\right)^{x}$, Find $\frac{d y}{d x}$
(A) $1 / 2$
(B) $3 / 4$
(C) $5 / 4$
(D) None of these
10. If $\mathrm{x}=\mathrm{t}+1 / \mathrm{t}, \mathrm{y}=\mathrm{t}-1 / \mathrm{t}$, then $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$ equals -
(A) $-4 \mathrm{t}\left(\mathrm{t}^{2}-1\right)^{-2}$
(B) $-4 \mathrm{t}^{3}\left(\mathrm{t}^{2}-1\right)^{-3}$
(C) $\left(\mathrm{t}^{2}+1\right)\left(\mathrm{t}^{2}-1\right)^{-1}$
(D) $-4 \mathrm{t}^{2}\left(\mathrm{t}^{2}-1\right)^{-2}$

Stretch Yourself

1. If $y^{2} x+x^{2} y+3 x y=2$, then find $\frac{d y}{d x}$
2. If $x^{3}-y^{3}+3 x y^{2}-3 x^{2} y+1=0$, then find $\frac{d y}{d x}$ at $(0,1)$
3. If $y=\frac{x \sqrt{2 x+1}}{2 x-1}$, then find $d y / d x$
4. If $x \sqrt{1+y}+y \sqrt{1+x}=0$, then find $\frac{d y}{d x}$
