

MEASURES OF DISPERSION

You have learnt various measures of central tendency. Measures of central tendency help us to represent the entire mass of the data by a single value.

Can the central tendency describe the data fully and adequately?

In order to understand it, let us consider an example.

The daily income of the workers in two factories are :

Factory A	:	35	45	50	65	70	90	100
Factory B	:	60	65	65	65	65	65	70

Here we observe that in both the groups the mean of the data is the same, namely, 65

(i) In group A, the observations are much more scattered from the mean.

(ii) In group B, almost all the observations are concentrated around the mean.

Certainly, the two groups differ even though they have the same mean.

Thus, there arises a need to differentiate between the groups. We need some other measures which concern with the measure of scatteredness (or spread).

To do this, we study what is known as **measures of dispersion.**

OBJECTIVES

After studying this lesson, you will be able to :

- explain the meaning of dispersion through examples;
- define various measures of dispersion range, mean deviation, variance and standard deviation;
- calculate mean deviation from the mean of raw and grouped data;
- calculate mean deviation from the median of raw and grouped data.
- calculate variance and standard deviation of raw and grouped data; and
- illustrate the properties of variance and standard deviation.
- Analyses the frequencys distributions with equal means.

EXPECTED BACKGROUND KNOWLEDGE

- Mean of grouped data
- Median of ungrouped data

17.1 MEANING OF DISPERSION

To explain the meaning of dispersion, let us consider an example.

(b) Mean Deviation from Mean : In Fig. 17.1, we note that the scores in section B cluster around the mean while in section A the scores are spread away from the mean. Let us take the deviation of each observation from the mean and add all such deviations. If the sum is 'large', the dispersion is 'large'. If, however, the sum is 'small' the dispersion is small.
MODULE - V
Statistics and Probability

Let us find the sum of deviations from the mean, i.e., 19 for scores in section A.

Observations (x_i)	Deviations from mean $(x_i - \overline{x})$	
6	-13	
9	-10	
11	-8	
13	-6	
15	-4	
21	+2	
23	+4	
28	+9	
29	+10	
35	16	
190	0	

Here, the sum is zero. It is neither 'large' nor 'small'. Is it a coincidence ?

Let us now find the sum of deviations from the mean, i.e., 19 for scores in section B.

Observations (x_i)	Deviations from mean $(x_i - \overline{x})$	
15	_4	
16	-3	
16	-3	
17	-2	
18	-1	
19	0	
20	1	
21	2	
23	4	
25	6	
190	0	

Again, the sum is zero. Certainly it is not a coincidence. In fact, we have proved earlier that **the sum of the deviations taken from the mean is always zero for any set of data.** Why is the sum always zero ?

On close examination, we find that the signs of some deviations are positive and of some other deviations are negative. Perhaps, this is what makes their sum always zero. In both the cases,

Notes

Notes

we get sum of deviations to be zero, so, we cannot draw any conclusion from the sum of deviations. But this can be avoided if we take only the **absolute value of the deviations** and then take their sum.

If we follow this method, we will obtain a measure (descriptor) called the mean deviation from the mean.

The mean deviation is the sum of the absolute values of the deviations from the mean divided by the number of items, (i.e., the sum of the frequencies).

- (c) **Variance :** In the above case, we took the absolute value of the deviations taken from mean to get rid of the negative sign of the deviations. Another method is to square the deviations. Let us, therefore, square the deviations from the mean and then take their sum. If we divide this sum by the number of observations (i.e., the sum of the frequencies), we obtain the average of deviations, which is called variance. **Variance is usually denoted by** σ^2 .
- (d) **Standard Deviation :** If we take the positive square root of the variance, we obtain the root mean square deviation or simply called standard deviation and is denoted by σ .

17.3 MEAN DEVIATION FROM MEAN OF RAW AND GROUPED DATA

Mean Deviation from mean of raw data = $\frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{\sum_{i=1}^{n} |x_i - \overline{x}|}$

n deviation from mean of grouped data =
$$\frac{\sum_{i=1}^{n} \left[f_i \left| x_i - \overline{x} \right| \right]}{N}$$

where $N = \sum_{i=1}^{n} f_i, \overline{x} = \frac{1}{N} \sum_{i=1}^{n} (f_i x_i)$

The following steps are employed to calculate the mean deviation from mean.

Step 1: Make a column of deviation from the mean, namely $x_i - \overline{x}$ (In case of grouped data

take x_i as the mid value of the class.)

Step 2: Take absolute value of each deviation and write in the column headed $|x_i - \overline{x}|$. For calculating the mean deviation from the mean of raw data use

Mean deviation of Mean
$$=\frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{N}$$

For grouped data proceed to step 3.

Step 3 : Multiply each entry in step 2 by the corresponding frequency. We obtain $f_i(x_i - \overline{x})$ and write in the column headed $f_i |x_i - \overline{x}|$.

Mear

Step 4 : Find the sum of the column in step 3. We obtain $\sum_{i=1}^{n} [f_i | x_i - \overline{x} |]$

Step 5: Divide the sum obtained in step 4 by N.

Now let us take few examples to explain the above steps.

	ile meun	ae main	511 11 0111			c 10110 W	ing adda .	
Size of items x _i	4	6	8	10	12	14	16	
Frequency f _i	2	5	5	3	2	1	4	
Mean is 10							•	
Solution :								
x _i	f_i	2	$x_i - \overline{x}$		$ \mathbf{x}_i - \overline{\mathbf{y}} $	x	$f_i x_i$	$-\overline{x}$
4	2	-5.7			5.7		11.4	
6	4	_	3.7		3.7		14.8	
8	5	_	1.7		1.7		8.5	5
10	3		0.3		0.3		0.9)
12	2		2.3		2.3		4.6	5
14	1	4.3			4.3		4.3	3
16	4	6.3			6.3		25.2	
	21						69.7	7

Example 17.1 Find the mean deviation from the mean of the following data :

Moon deviation from moon	_	$\sum \big[f_i \big x_i - \overline{x} \big \big]$	$-\frac{69.7}{-33}$	19
Weath deviation from mean	_	21	21 21	1)

Example 17.2 Calculate the mean deviation from mean of the following distribution :

Marks		0-10		10-20	20-30	30-40	40-50
No. of Stud	lents	ts 5 8 15 16		6			
Mean is 27 n	narks					•	
Solution :							
Marks	Class Marl	ks x _i	$\mathbf{f_i}$	x _i – 2	x 2	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_{i}\left x_{i}^{} - \overline{x} \right $
0-10	5		5	-22		22	110
10 - 20	15		8	-12		12	96
20 - 30	25		15	-2		2	30
30 - 40	35		16	8		8	128
40 - 50	45		6	18 18		18	108
Total			50				472

MODULE - V Statistics and Probability	Mea	n deviation fro	om N	fean	$= \sum_{n=1}^{\infty}$	[f _i]	$ \mathbf{x}_i - \mathbf{x}_i $	x []	$\frac{1}{2} = \frac{47}{50}$	$\frac{2}{2}$ M	arks :	= 9.	44 M	arks	3		
				10		<u> </u>			ר ססק	./.1							
Notes	1.	The ages of	10 gi	rls a	re giv	en b	elow:				_			_			
		3 5		7	8		9		10	12	2	14	1	7	18		
		What is the 1	ange	e?													
	2.	The weight of	of 10	stuc	lents	(in k	Kg) of	cla	ss XII	are g	givenl	belo	w:				
		45 49		55	4	3	52		40	6	2	47	6	1	58		
		What is the 1	ange	e?													
	3.	Find the mea	ın de	viati	on fro	omn	nean o	ftł	ne data	l							
		45 55		63	7	6	67		84	7:	5	48	6	2	65		
Given mean = 64.4. Calculate the mean deviation from mean of the following distribution.																	
									ofthe	follo	wing	distr	ibutio	n.			
	Sala	ry (in rupees)	20	-30	30-	-40	40-5	50	50-6	50 6	0-70) 7()-80	80	-90	90-	-100
	No. of employees				6	5	8		12		7		6		4		3
	Give	en mean = Rs.	57.2		•					•		•		•			
	5.	5. Calculate the mean deviation for the following data of marks obtained by 40 students in a test															
		Marks obtai	ned	20)	30	40		50	60	70	80) 9	0	100		
		No. of stude	nts	2	,	4	8		10	8	4	2]	1	1		
	6	The data bal	011/ *	reco	nte tl		rninge		50 w	nrkar	s of a	fact	orv				
	о. Г	Eornings (in			120		1200		1400			500	1900	20	000		
		No. of work	are	(5)	120		6	+	1400	130		500 7	1800		2		
	L	Find maan d			4		0		15	12	,	/	4		2		
	7.	The distribut	tion of	ion. of we	eight	of 10)0 stud	len	ts is gi	ven b	elow	:					
		Weight (in K	g)	50-	-55	55	-60	60)-65	65	-70	70	-75	7:	5-80]	
		No. of stude	nts	4	5	1	13		35	2	25		17		5	1	
		Calculate th	he m	ean c	levia	tion.	I				I					4	

I

8. The marks of 50 students in a particular test are :

Marks	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No. of students	4	6	9	12	8	6	4	1

Find the mean deviation for the above data.

17.4 MEDIAN

17.4.1 MEDIAN OF GROUPED DATA

Median of Discrete Frequency Distribution :

Step 1 : Arrange the data in ascending order.

Step 2 : Find cumulative frequencies

Step 3 : Find $\frac{N}{2}$

Step 4 : The observation whose cumulative frequency is just greater than $\frac{N}{2}$ is the median of the data

of the data.

Example 17.3 Find the median of the data

x _i	8	9	10	12	14	16
f_i	6	2	2	2	6	8

Solution : The given data are already in ascending order. Let us now write the cumulative frequencies of observations

x _i	8	9	10	12	14	16
f_i	6	2	2	2	6	8
c.f.	6	8	10	12	18	26

 $N = 26, \qquad \therefore \frac{N}{2} = 13.$

The observation whose c.f. is just greater than 13 is 14 (whose c.f. is 18)

 \therefore Median = 14.

17.4.2 MEDIAN OF CONTINUOUS FREQUENCY DISTRIBUTION

Step 1 : Arrange the data in ascending order

Step 2 : Write cumulative frequencies of the observations

Step 3 : Identify the class whose cumulative frequency is just greater than $\frac{N}{2}$. Call this class-interval as median class.

MATHEMATICS

MODULE - V

MODULE - V Statistics and

Step 4 : Find median by the formula

Notes

Median = $l + \frac{\frac{N}{2} - C}{f} \times i$

Where

 $l \rightarrow$ Lower limit of the median class

- $N \rightarrow$ Number of observations N = Σf_i
- $C \rightarrow$ Cumulative frequency of the class just preceding the median class
- $f \rightarrow$ Frequency of the median class
- $i \rightarrow$ Width of the median class

Example 17.4 Find the median marks obtained by 50 students from the following distribution :

Marks	0-10	10-20	20-30	30-40	40-50
Number of Students	8	8	14	16	4

Solution : The given intervals are already in ascending order. The following table has the row corresponding to the cumulative frequencies.

Marks	0-10	10-20	20-30	30-40	40-50
Number of students	8	8	14	16	4
Cummulative frequency	8	16	30	46	50

$$N = 50, \ \frac{N}{2} = 25$$

The class corresponding to the c.f. just greater than 25 is 20-30.

... Median class is 20-30
where
$$l = 20$$
, N = 50, C = 16, $f = 14$, $i = 10$.
... Median = $l + \frac{\frac{N}{2} - C}{f} \times i = 20 + \frac{25 - 16}{14} \times 10$
 $= 20 + \frac{9}{14} \times 10 = 20 + 6.43 = 26.43$

Example 17.5 Find the median of the following:

Marks	Number of Students
0 – 9	3
10 – 19	5
20 – 29	8
30 – 39	9
40 – 49	13
50 – 59	6

380

Solution : The given class intervals are inclusive series Before finding the median we have to convert the inclusive series into exclusive series.

Method of converting an inclusive series into exclusive series.

(1) Find the half of the difference between the upper limit of a class and the lower limit of its succeeding (next) class.

$$\frac{N}{2} = \frac{44}{2} = 22$$

... Median class is 29.5 - 39.5 as its c.f. is 25, which is just greater than 22. Now, l = 29.5, N = 44, C = 16, f = 9, i = 39.5 - 29.5 = 10

$$\therefore \quad \text{Median} = l + \frac{\frac{N}{2} - C}{f} \times i = 29.5 + \frac{22 - 16}{9} \times 10$$
$$= 29.5 + \frac{6}{9} \times 10 = 29.5 + \frac{20}{3}$$
$$= 29.5 + 6.66 = 36.16$$

CHECK YOUR PROGRESS 17.2

Find the median of the following data :

1.	x _i	6	11	16	21	26
	f_i	5	3	6	4	7
2.	x _i	5	10	15	20	25
	f_i	5	25	29	17	9

3.	Marks	0-5	5-10	10-15	15-20	20-25
	Number of Boys	5	9	10	14	12

MODULE - V Statistics and Probability

Notes

4.	Age (in years)	17-21	21-26	26-31	31-36	36-41
	Number of Boys	5	6	12	7	4

17.5 MEAN DEVIATION FROM MEDIAN

We know that for observations in data the central tendency give us the values about which the data concentrate or cluster. It is also essential to know that how far all observation are, from a measure of central tendency. In other words, in data it is required to know how dispersed the observations are from a given point (or a measure of central tendency). In most of the cases mean deviation from mean and median give us the desired disperson or deviation of the observations. Recall that mean deviation for data is defined as the mean of the absolute values of deviations from 'a'.

Recall that the deviation of an observation x from a fixed point 'a' is the difference x - a.

So mean deviation about 'a' denoted by M.D (a) is given by

M.D. (a) =
$$\frac{\text{Sum of the absolute values of deviations from 'a'}}{\text{Sum of the absolute values of deviations from 'a'}}$$

Number of observations

Methematically we can write

M.D.(a) =
$$\frac{\sum_{i=1}^{n} |x_i - a|}{n}$$

Like wise

M.D. (Mean =
$$\overline{X}$$
) = $\frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$

and

M.D.(Median M) =
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - M|$$

Example 17.6 Find mean deviation about median for the observation

7, 10, 15, 16, 8, 9, 5, 17, 14

Solution : In order to find median, arrange the given values in ascending order, so we have 5, 7, 8, 9, 10, 14, 15, 16, 17,

Algorithm to find mean deviation about mean/median :

- **Step 1 :** Calculate the mean or median of the data
- **Step 2 :** Find deviations of each observation x_i from mean/median
- Step 3: Find the absolute values of the deviations.
 Assolute values can be obtained by dropping the minus sign if it is there
 Step 4: Calculate the mean of the obsolute values of the deviations. This mean will be the required Mean deviation.

382

Median = $\frac{n+1}{2}$ th observation = 5th observation M = 10.Deviations of the observation from median i.e. 10 are 7–10 8–10 9-10 10-10 14-10 15-10 16-10 17-10 5-10 -5 -3 -2 -1 0 4 5 6 7 i.e x_i -M are Absolute values of the deviations i.e. $|x_i - M|$ are 5, 3, 2, 1, 0, 4, 5, 6, 7 M.D. (M) = $\frac{\sum_{i=1}^{n} |x_i - M|}{n}$ Now $= \frac{5+3+2+1+0+4+5+6+7}{10} = \frac{33}{10} = 3.3.$ **17.5.1 MEAN DEVIATION OF GROUPED DATA FROM MEDIAN** Recall that data presented in the following form are called grouped data Discrete frequency distribution (a) Observation : x_1 x_2 x_3 ••• x_n Frequencies f_1 f_2 : f_3 ... (b) Continuous frequency distribution : Observations $l_1 - u_1$ $l_2 - u_2$ $l_n - u_n$ $l_3 - u_3$ ••• f_2 f_3 f_n Frequencies f_1 ••• For example, marks obtained by 50 students Marks 20-25 25-30 0-5 5-10 10-15 15-20 Number of Students 8 12 10 4 6 10 Let us now learn to find mean deviation about median by following examples. Example 17.7 Find the mean deviation about the median for the following data : 25 20 15 10 5 x_i 7 4 5 f_i 6 3 c.f. 7 11 17 20 25 **MATHEMATICS**

Measures of Dispersion

n = 9,

MODULE - V Statistics and

Probability

Here N = 25, and we know that median is the $\frac{25+1}{2}$ = 13th observation. This observation lies in the C.f 17, for which corresponding observation is 15.

Median M = 15

Now deviations and their absolute values are given in following table.

Notes

....

....

x _i	f_i	$x_i - \mathbf{M}$	$ x_i - \mathbf{M} $	$f_i x_i - \mathbf{M} $
25	7	25 - 15 = 10	10	$7 \times 10 = 70$
20	4	20 - 15 = 5	5	$4 \times 5 = 20$
15	6	15 - 15 = 0	0	$6 \times 0 = 0$
10	3	10 - 15 = -5	5	3 × 5 = 15
5	5	5 - 15 = - 10	10	$5 \times 10 = 50$
	$N=\Sigma f_i=25$			$\Sigma f_i x_i - M = 155$

Mean Deviation (M) =
$$\frac{\sum_{i=1}^{n} f_i |x_i - M|}{\sum_{i=1}^{n} f_i} = \frac{155}{25} = 6.2$$

Example 17.8 Find the mean deviation about median for the following data :

Heights (in cm)	95-105	105-115	115-125	125-135	135-145	145-155
Number of Girls	9	15	23	30	13	10

Solution : Let us first find median :

Height (in cm)	Number of Girls (f)	Cumulative frequncy (c.f)
95-105	9	9
105-115	15	24
115-125	23	47
125-135	30	77
135-145	13	90
145-155	10	100

N = 100 $\Rightarrow \frac{N+1}{2} = \frac{101}{2} = 50.5$ $\frac{N}{2} = 50.5$ lies in c.f. 77. ∴ Median class is corresponding to the c.f. 77 i.e., 125 – 135 Now, Median = $l + \frac{N}{2} - C = c$ where l = lower limit of the median class N = sum of frequencies C = c.f. of the class just preceding the median class f = frequency of the median classand i = width or class-size of the median classHere, l = 125, N = 100, C = 47, f = 30, i = 10

$$\therefore \qquad M = 125 + \frac{50 - 47}{30} \times 10 = 125 + \frac{3}{3} = 126$$

To find mean deviation let us form the following table :

Height (in cm)	Number of Girls (f)	Mid-value of the heights	Absolute Deviation $(x_i - M)$	$f_i x_i - \mathbf{M} $
95-105	9	100	100-126 = 26	9 × 26 = 234
105-115	15	110	110-126 = 16	$15 \times 16 = 240$
115-125	23	120	120 - 126 = 6	$23 \times 6 = 138$
125-135	30	130	130-126 = 4	$30 \times 4 = 120$
135-145	13	140	140-126 = 14	$13 \times 14 = 182$
145-155	10	150	150-126 = 24	$10 \times 24 = 240$
	$\Sigma f_i = 100$			$\Sigma f_i \mathbf{x}\mathbf{i} - \mathbf{M} = 1154$

:. Mean Deviation (Median) = M.D.(M) =
$$\frac{\sum_{i=1}^{n} f_i |x_i - M|}{\sum_{i=1}^{n} f_i} = \frac{1154}{100} = 11.54.$$

17.5.2 STEP TO FIND MEAN DEVIATION FROM MEDIAN OF A CONTINUOUS FREQUENCY DISTRIBUTION.

Step 1 : Arrange the intervals in ascending order

Step 2 : Write cumulative frequencies

MATHEMATICS

Step 3: Identify the median class, as the class having c.f. just greater than $\frac{N}{2}$, where N is the total number of obsservations (i.e. sum of all frequencies)

Step 4: Find the corresponding values for the median class and put in the formula :

Notes

Median =
$$l + \frac{\frac{N}{2} - C}{f} \times i$$

where

$$l \rightarrow$$
 lower limit of the madian class

- $N \rightarrow$ Sum of frequencies
- $C \rightarrow \text{ c.f. of the class just preceding the median class}$
- $f \rightarrow$ frequency of the median class

 $i \rightarrow$ width of the median class

Step 5 : Now form the table for following columns :

Given intervals	Frequencies	Mid-value	Absolute	$f_i x_i - \mathbf{M} $
		x _i	Deviation from	
			Median $ x_i - \mathbf{M})$	

Step 6 : Now calculate

M.D.(M) =
$$\frac{\sum_{i=1}^{n} f_i |x_i - M|}{\sum_{i=1}^{n} f_i}$$

CHECK YOUR PROGRESS 17.3

Find the mean deviation about median of the following data.

									-
1.	x_i	11	12	13	14	16	17	18	
	f_i	2	3	2	3	1	2	1	
		-			-			-	•
2.	x_i	3	6	7	9	11	13		
	f_i	3	9	11	8	9	6		
					-				
3.	Weig	ht (in kg)	40-42	4	2-44	44-46	46-48	3 4	48-50
	No. c	of Studen	its 9		13	24	28		6

4.	Age (in years)	0-1	1-2	2-3	3-4	4-5
	No. of Children given polio drops	100	155	210	315	65

17.6 VARIANCE AND STANDARD DEVIATION OF RAW DATA

If there are n observations, $x_1, x_2, ..., x_n$, then

Variance
$$(\sigma^2) = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}$$

or $\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$; where $\overline{x} = \frac{\sum_{i=1}^n x_i}{n}$

or

The standard deviation, denoted by σ , is the positive square root of σ^2 . Thus

$$\sigma = + \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

The following steps are employed to calculate the variance and hence the standard deviation of raw data. The mean is assumed to have been calculated already.

Step 1 : Make a column of deviations from the mean, namely, $x_i - \overline{x}$.

Step 2 (check) : Sum of deviations from mean must be zero, i.e., $\sum_{i=1}^{n} (x_i - \overline{x}) = 0$

Step 3: Square each deviation and write in the column headed $(x_i - \overline{x})^2$.

Step 4: Find the sum of the column in step 3.

Step 5: Divide the sum obtained in step 4 by the number of observations. We obtain σ^2 .

Step 6: Take the positive square root of σ^2 . We obtain σ (Standard deviation).

Example 17.9	The daily	sale of sugar in	n a certain gro	cery shop is g	given below :
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
75 kg	120 kg	12 kg	50 kg	70.5 kg	140.5 kg

The average daily sale is 78 Kg. Calculate the variance and the standard deviation of the above data.

MODULE - V Statistics and Probability

Notes

								11100		-	
- V and	Solution : $\overline{\mathbf{x}}$	= 78 kg	g (Given))							
ty	x _i				x _i	$-\overline{\mathbf{x}}$			(x _i -	$\overline{\mathbf{x}}$) ²	
	75				_	3			9		
	120				4	2			1764		
Notes	12				- 6	6			4356		
	50				- 2	8			784		
	70.5				-7.	5			56.25		
	140.5				62.	5			3906.25		
						0		1	0875.50		
	Thus	$\sigma^2 =$	$\frac{\sum_{i=1}^{r} (x_i)}{r}$	$(-\overline{x})^2$	$=\frac{1087}{6}$	7 <u>5.50</u> =	= 1812.5	8 (appro	ox.)		
	and	σ =	42.57 (approx.	.)						
- 1		10 10	montra	of 10 at	udanta a	fsectio	on A in a	test in E	nglish ar	e given	below:
	Example 17.	10 The	marks	01 10 SU	udentso	1 500010			0		
	Example 17.	7	10	12	13	15	20	21	28	29	35
	Example 17.	7 varianc	10 10 the and the	12 e standa	13 ard devia	15 15 ation.	20	21	28	29	35
	Example 17. Determine the Solution : He	7 variance even $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = $	13 ard devia = 19	15 ation.	20	21	28	29	35
	Example 17. Determine the Solution : He x_i	7 variance ere $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$	15 ntion.	20	21	28 (x _i -	$\frac{29}{(-\overline{x})^2}$	35
	Example 17. Determine the Solution : He x_i 7	7 variance even $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$ -1	15 ation.	20	21	28 (x _i - 144	$\frac{29}{(\overline{x})^2}$	35
	Example 17. Determine the Solution : He x_i 7 10	10 The 7 variance $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$ -1	15 ation. 2 9	20	21	28 (x _i - 144 81	$\frac{29}{(-\overline{x})^2}$	35
	Example 17. Determine the Solution : He x_i 7 10 12	10 The 7 variance $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$ -1 -	15 ation. 2 9 7	20	21	28 (x _i - 144 81 49	29 $(-\overline{x})^2$	35
	Example 17. Determine the Solution : He x_i 7 10 12 13	7 variance ere $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$ -1 -1 -	15 ation. 2 9 7 6	20	21	28 (x ₁ - 144 81 49 36	(29)	35
	Example 17. Determine the Solution : He x_i 7 10 12 13 15	10 The 7 variance $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$ -1 -1 - -	15 ution. 2 9 7 6 4	20	21	28 (x _i - 144 81 49 36 16	(29)	35
	Example 17. Determine the Solution : He x_i 7 10 12 13 15 20	10 The 7 variance $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$ -1 - - - +	15 ation. 2 9 7 6 4 1	20	21	28 (x _i - 144 81 49 36 16 1	$(\overline{x})^2$	35
	Example 17. Determine the Solution : He x_i 7 10 12 13 15 20 21	10 The 7 variance $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$ -1 - - + +	15 ation. 2 9 7 6 4 1 2	20	21	28 (x _i - 144 81 49 36 16 1 4	(29)	35
	Example 17. Determine the Solution : He x _i 7 10 12 13 15 20 21 28	10 The 7 variance $\overline{x} =$	$\frac{10}{2}$ the and the $\frac{\sum x_i}{10}$	12 e standa $= \frac{190}{10} = \frac{1}{10}$	13 ard devia = 19 $x_i - \overline{x}$ -1 - - + + +	15 ation. 2 9 7 6 4 1 2 9	20	21	28 (x _i - 144 81 49 36 16 1 4 81	$(\overline{x})^2$	35
	Example 17. Determine the Solution : He x _i 7 10 12 13 15 20 21 28 29	10 The 7 variance $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{190}{10}$	13 ard devia $= 19$ $x_i - \overline{x}$ -1 $-$ $-$ $+$ $+$ $+$ $+1$	15 ation. 2 9 7 6 4 1 2 9 0	20	21	28 (x _i - 144 81 49 36 16 1 4 81 100	(29)	35
	Example 17. Determine the Solution : He x_i 7 10 12 13 15 20 21 28 29 35	10 The 7 variance $\overline{x} =$	$\frac{10}{\sum x_i}$	12 e standa $= \frac{190}{10} = \frac{190}{10}$	13 ard devia $= 19$ $x_i - \overline{x}$ -1 $-$ $-$ $+$ $+$ $+1$ $+1$	15 15 15 15 15 15 15 2 9 7 6 4 1 2 9 0 6	20	21	28 (x _i - 144 81 49 36 16 1 4 81 100 256	(29)	35

17. 7 STANDARD DEVIATION AND VARIANCE OF RAW DATA AN ALTERNATE METHOD

If \overline{x} is in decimals, taking deviations from \overline{x} and squaring each deviation involves even more decimals and the computation becomes tedious. We give below an alternative formula for computing σ^2 . In this formula, we by pass the calculation of \overline{x} .

We know

$$\sigma^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})^{2}}{n} = \sum_{i=1}^{n} \frac{x_{i}^{2} - 2x_{i}\overline{x} + \overline{x}^{2}}{n}$$
$$= \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \frac{2\overline{x}\sum_{i=1}^{n} x_{i}}{n} + \overline{x}^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \overline{x}^{2}, \left(\because \overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{n} \right)$$
$$\sigma^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n}$$

i.e.

And $\sigma = +\sqrt{\sigma^2}$

The steps to be employed in calculation of σ^2 and, hence σ by this method are as follows : **Step 1**: Make a column of squares of observations i.e. x_i^2 .

Notes Step 2: Find the sum of the column in step 1. We obtain $\sum_{i=1}^{n} x_i^2$

Step 3: Substitute the values of $\sum_{i=1}^{n} x_i^2$, n and $\sum_{i=1}^{n} x_i$ in the above formula. We obtain σ^2 .

Step 4 : Take the positive sauare root of σ^2 . We obtain σ .

Example 17.11 We refer to Example 17.10 of this lesson and re-calculate the variance and standard deviation by this method.

Solution :

x _i	x _i ²	
7	49	
10	100	
12	144	
13	169	
15	225	
20	400	
21	441	
28	784	
29	841	
35	1225	
190	4378	

$$\sigma^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n}$$

$$=\frac{4378-\frac{(190)^2}{10}}{10}$$

_

$$=\frac{4378-3610}{10}=\frac{768}{10}=76.8$$

 $\sigma = +\sqrt{76.8} = 8.76$ (approx)

We observe that we get the same value of σ^2 and σ by either methods.

17.8 STANDARD DEVIATION AND VARIANCE OF GROUPED DATA : METHOD - I

We are given k classes and their corresponding frequencies. We will denote the variance and the standard deviation of grouped data by σ_g^2 and σ_g respectively. The formulae are given below :

$$\sigma_{g}^{2} = \frac{\sum_{i=1}^{K} \left[f_{i} \left(x_{i} - \overline{x} \right)^{2} \right]}{N}, N = \sum_{i=1}^{K} f_{i} \text{ and } \sigma_{g} = +\sqrt{\sigma_{g}^{2}}$$

The following steps are employed to calculate σ_g^2 and, hence σ_g : (The mean is assumed to have been calculated already).

- **Step 1:** Make a column of class marks of the given classes, namely x_i
- **Step 2 :** Make a column of deviations of class marks from the mean, namely, $x_i \overline{x}$. Of course the sum of these deviations need not be zero, since x_i 's are no more the original observations.
- **Step 3:** Make a column of squares of deviations obtained in step 2, i.e., $(x_i \overline{x})^2$ and write in the column headed by $(x_i \overline{x})^2$.
- **Step 4 :** Multiply each entry in step 3 by the corresponding frequency.

We obtain $f_i (x_i - \overline{x})^2$.

Step 5 : Find the sum of the column in step 4. We obtain $\sum_{i=1}^{K} \left[f_i (x_i - \overline{x})^2 \right]$

Step 6: Divide the sum obtained in step 5 by N (total no. of frequencies). We obtain σ_g^2 .

Step 7 : $\sigma_g = +\sqrt{\sigma_g^2}$

Example 17.12 In a study to test the effectiveness of a new variety of wheat, an experiment was performed with 50 experimental fields and the following results were obtained :

	Measures of Dispersion
Yield per Hectare (in quintals)	Number of Fields
31-35	2
36-40	3
41-45	8
46-50	12
51-55	16
56-60	5
61-65	2
66-70	2

The mean yield per hectare is 50 quintals. Determine the variance and the standard deviation of the above distribution.

Solution :

Yield per Hecta	are No. of	Class	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$	$f_i \left(x_i - \overline{x} \right)^2$
(in quintal)	Fields	Marks			
31-35	2	33	-17	289	578
36-40	3	38	-12	144	432
41-45	8	43	-7	49	392
46-50	12	48	-2	4	48
51-55	16	53	+3	9	144
56-60	5	58	+8	64	320
61-65	2	63	+13	169	338
66 - 70	2	68	+18	324	648
Total	50				2900
	n r	<u>,</u> 27			

Thus
$$\sigma_g^2 = \frac{\sum_{i=1}^{n} \left[f_i \left(x_i - \overline{x} \right)^2 \right]}{N} = \frac{2900}{50} = 58 \text{ and } \sigma_g = +\sqrt{58} = 7.61 \text{ (approx)}$$

17.9 STANDARD DEVIATION AND VARIANCE OF GROUPED DATA : – METHOD - II

If \overline{x} is not given or if \overline{x} is in decimals in which case the calculations become rather tedious, we employ the alternative formula for the calculation of σ_g^2 as given below:

$$\sigma_g^2 = \frac{\sum_{i=1}^k \left[f_i x_i^2 \right] - \frac{\left(\sum_{i=1}^k \left[f_i x_i \right] \right)^2}{N}}{N}, \quad N = \sum_{i=1}^k f_i$$

MATHEMATICS

and $\sigma_g = +\sqrt{\sigma_g^2}$

The following steps are employed in calculating σ_g^2 , and, hence σ_g by this method:

- **Step 1**: Make a column of class marks of the given classes, namely, x_i .
- **Step 2 :** Find the product of each class mark with the corresponding frequency. Write the product in the column $x_i f_i$.

Step 3 : Sum the entries obtained in step 2. We obtain $\sum_{i=1}^{k} (f_i x_i)$.

- **Step 4**: Make a column of squares of the class marks of the given classes, namely, x_i^2 .
- **Step 5**: Find the product of each entry in step 4 with the corresponding frequency. We obtain $f_i x_i^2$.

Step 6 : Find the sum of the entries obtained in step 5. We obtain $\sum_{i=1}^{k} (f_i x_i^2)$.

Step 7: Substitute the values of $\sum_{i=1}^{k} (f_i x_i^2)$, N and $\left(\sum_{i=1}^{k} (f_i x_i)\right)$ in the formula and obtain

$$\sigma_{g}^{2}$$
.

Step 8 : $\sigma_g = +\sqrt{\sigma_g^2}$.

Example 17.13 Determine the variance and standard deviation for the data given in Example 17.12 by this method.

Solution :

Yields per Hectare	f_i	x _i	$f_i x_i$	x_i^2	$f_i x_i^2$
(in quintals)					
31-35	2	33	66	1089	2178
36-40	3	38	114	1444	4332
41-45	8	43	344	1849	14792
46-50	12	48	576	2304	27648
51-55	16	53	848	2809	44944
56-60	5	58	290	3364	16820
61-65	2	63	126	3969	7938
66-77	2	68	136	4624	9248
Total	50		2500		127900

Substituting the values of $\sum_{i=1}^k \big(\,f_i x_i^2\,\big),$ N and $\sum_{i=1}^k \big(\,f_i x_i^{}\,\big)$ in the formula, we obtain

and $\sigma_g = +\sqrt{58} = 7.61$ (approx.)

 $\sigma_g^2 = \frac{127900 - \frac{(2500)^2}{50}}{50} = \frac{2900}{50} = 58$

Again, we observe that we get the same value of σ_g^2 , by either of the methods.

CHECK YOUR PROGRESS 17.5

1. In a study on effectiveness of a medicine over a group of patients, the following results were obtained :

Percentage of relief	0-20	20-40	40-60	60-80	80-100	
No. of patients	10	10	25	15	40	

Find the variance and standard deviation.

2. In a study on ages of mothers at the first child birth in a village, the following data were available :

Age (in years)	18-20	20-22	22-24	24-26	26-28	28-30	30-32
at first child birth							
No. of mothers	130	110	80	74	50	40	16

Find the variance and the standard deviation.

3. The daily salaries of 30 workers are given below:

Daily salary	0-50	50-100	100-150	150-200	200-250	250-300
(In Rs.)						
No. of workers	3	4	5	7	8	3

Find variance and standard deviation for the above data.

17.10 STANDARD DEVIATION AND VARIANCE: STEP DEVIATION METHOD

In Example 17.12, we have seen that the calculations were very complicated. In order to simplify the calculations, we use another method called the step deviation method. In most of the frequency distributions, we shall be concerned with the equal classes. Let us denote, the class size by h.

Now we not only take the deviation of each class mark from the arbitrary chosen 'a' but also divide each deviation by h. Let Statistics and

$$u_i = \frac{x_i - a}{h} \qquad \dots \dots (1)$$

Then

 $x_i = hu_i + a \qquad \dots (2)$ hat $\overline{x} = h\overline{u} + a \qquad \dots (3)$

We know that

Subtracting (3) from (2), we get

$$x_i - \overline{x} = h(u_i - \overline{u}) \dots (4)$$

In (4), squaring both sides and multiplying by f_i and summing over k, we get

$$\sum_{i=1}^{k} \left[f_i \left(x_i - \overline{x} \right)^2 \right] = h^2 \sum_{i=1}^{k} \left[f_i \left(u_i - \overline{u} \right)^2 \right] \dots (5)$$

Dividing both sides of (5) by N, we get

$$\frac{\sum_{i=1}^{k} \left[f_i \left(x_i - \overline{x} \right)^2 \right]}{N} = \frac{h^2}{N} \sum_{i=1}^{k} \left[f_i \left(u_i - \overline{u} \right)^2 \right]$$
$$\sigma_x^2 = h^2 \sigma_u^2 \qquad \dots (6)$$

i.e.

where σ_x^2 is the variance of the original data and σ_u^2 is the variance of the coded data or coded variance. σ_u^2 can be calculated by using the formula which involves the mean, namely,

$$\sigma_{u}^{2} = \frac{1}{N} \sum_{i=1}^{k} \left[f_{i} \left(u_{i} - \overline{u} \right)^{2} \right] , \qquad N = \sum_{i=1}^{k} f_{i} \qquad \dots (7)$$

or by using the formula which does not involve the mean, namely,

$$\sigma_{u}^{2} = \frac{\sum_{i=1}^{k} \left[f_{i} u_{i}^{2} \right] - \frac{\left(\sum_{i=1}^{k} \left[f_{i} u_{i} \right] \right)^{2}}{N}}{N}, \quad N = \sum_{i=1}^{k} f_{i} \qquad \dots (8)$$

Example 17.14 We refer to the Example 17.12 again and find the variance and standard deviation using the coded variance.

Solution : Here h = 5 and let a = 48.

Yield per Hectare	Number	Class	$u_i = \frac{x_i - 48}{5}$	$f_i u_i$	u_i^2	$f_i {u_i}^2$
(in quintal)	of fields f_i	marks _{xi}				
31-35	2	33	-3	-6	9	18
36-40	3	38	-2	-6	4	12

MATHEMATICS

Notes

41 - 45

46 - 50

51 - 55

56 - 60

61-65

66 - 70

Total

 $\sigma_u^2 = \frac{\sum_{i=1}^k f_i u_i^2 - \frac{\left(\sum_{i=1}^k f_i u_i\right)^2}{N}}{N}$

8

12

16

5

2

2

50

43

48

53

58

63

68

-1

0

+1

+2

+3

+4

$$=\frac{124-\frac{(20)^2}{50}}{50}=\frac{124-8}{50} \text{ or } \sigma_u^2=\frac{58}{25}$$

Variance of the original data will be

$$\sigma_x^2 = h^2 \sigma_u^2 = 25 \times \frac{58}{25} = 58$$

and

Thus

 $\sigma_x = +\sqrt{58}$ = 7.61 (approx)

We, of course, get the same variance, and hence, standard deviation as before.

Example 17.15 Find the standard deviation for the following distribution giving wages of 230 persons.

Wages (in Rs)	No. of persons	Wages (in Rs)	No. of persons
70-80	12	110-120	50
80-90	18	120-130	45
90-100	35	130-140	20
100-110	42	140-150	8

Measures of Dispersion

1

0

1

4

9

16

8

0

16

20

18

32

124

-8

0

16

10

6

8

20

	Persection						
Solution :							MODULE -
Wages	No. of	class	$u_i = \frac{x_i - 105}{10}$	u_i^2	f _i u _i	$f_i u_i^2$	Probability
(in Rs.)	persons f _i	mark x _i					
70-80	12	75	-3	9	-36	108	Notes
80-90	18	85	-2	4	-36	72	rotes
90-100	35	95	-1	1	-35	35	
100-110	42	105	0	0	0	0	
110-120	50	115	+1	1	50	50	
120-130	45	125	+2	4	90	180	
130-140	20	135	+3	9	60	180	
140 - 150	8	145	+4	16	32	128	
Total	230				125	753	
	<u>, 2</u> 1 5 [()	$\left[\sum_{i=1}^{2} \right]^{2}$				
σ	$f^2 = h^2 \left \frac{1}{N} \sum_{k=1}^{N} \int_{0}^{\infty} f^{k} dt \right ^2$	$\begin{bmatrix} u_i^2 \end{bmatrix} - \begin{bmatrix} \frac{1}{2} \end{bmatrix}$	$\frac{1}{N}\sum \left[f_{i}u_{i}\right]$				
	-		_				•
	$\begin{bmatrix} 752 \\ 12 \end{bmatrix}$	<u> </u>					
=	$100\left[\frac{753}{230} - \left(\frac{12}{23}\right)\right]$	$\left[\frac{5}{50}\right]^2 = 1$.00(3.27-0.29)	= 298			
= ∴ σ	$100 \left[\frac{753}{230} - \left(\frac{12}{23} - \frac{12}{23} + \sqrt{298} \right) \right]$ $= +\sqrt{298} = 17.3$	$\left[\frac{5}{50}\right]^2 = 1$ g (approx)	.00(3.27-0.29)	= 298			
= ∴ σ	$100 \left[\frac{753}{230} - \left(\frac{12}{23} - \frac{12}{23} + \sqrt{298} \right) \right]$ $= +\sqrt{298} = 17.3$	$\left[\frac{5}{60}\right]^2 = 1$ g (approx)	.00(3.27 – 0.29)	= 298			
= ∴ σ CHE	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ = +\sqrt{298} = 17.3 CK YOUR P	$\left[\frac{5}{30}\right]^2 = 1$ (approx) ROGRE	.00(3.27 – 0.29) SS 17.6	= 298			
= σ CHE 1. The data wr	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ $= +\sqrt{298} = 17.3$ $CK YOUR P$ itten below gives	$\frac{5}{30} \Big _{3}^{2} = 1$ (approx) ROGRE the daily ea	.00 (3.27 – 0.29) <mark>SS 17.6</mark> rnings of 400 work	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ $= +\sqrt{298} = 17.3$ CK YOUR P Fitten below gives kly earning (in Resource of the second s	$\frac{5}{30} \Big _{3}^{2} = 1$ (approx) ROGRE the daily ea	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ = $+\sqrt{298} = 17.3$ CK YOUR P Fitten below gives kly earning (in Res 80 - 100	$\left[\frac{5}{30}\right]^{2} = 1$ (approx) ROGRE the daily ea	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ $= +\sqrt{298} = 17.3$ $\frac{\mathbf{CK YOUR P}}{\mathbf{F}}$ Fitten below gives kly earning (in Restricted to the second sec	$\left[\frac{5}{60}\right]^{2} = 1$ (approx) ROGRE the daily ea	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ = +\sqrt{298} = 17.3 CK YOUR P itten below gives kly earning (in Res 80 - 100 100 - 120 120 - 140	$\frac{5}{30} \Big _{3}^{2} = 1$ (approx) ROGRE the daily ea	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20 25	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ = $+\sqrt{298} = 17.3$ CK YOUR P Fitten below gives kly earning (in Rs 80 - 100 100 - 120 120 - 140 140 - 160	$\left[\frac{5}{30}\right]^{2} = 1$ (approx) ROGRE the daily ea	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20 25 40	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ = +\sqrt{298} = 17.3 CK YOUR P itten below gives kly earning (in Res 80 - 100 100 - 120 120 - 140 140 - 160 160 - 180	$\frac{5}{30} \Big _{3}^{2} = 1$ (approx) ROGRE the daily ea (a)	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20 25 40 80	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ = $+\sqrt{298} = 17.3$ CK YOUR P Fitten below gives kly earning (in Rest 80 - 100 100 - 120 120 - 140 140 - 160 160 - 180 180 - 200	$\left[\frac{5}{30}\right]^{2} = 1$ (approx) ROGRE the daily ea (a)	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20 25 40 80 65	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} + \sqrt{298} \right) \right]$ = +\sqrt{298} = 17.3 CK YOUR P itten below gives kly earning (in Res 80 - 100 100 - 120 120 - 140 140 - 160 160 - 180 180 - 200 200 - 220	$\frac{5}{30} \Big _{3}^{2} = 1$ (approx) ROGRE the daily ea	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20 25 40 80 65 60	= 298 ers of a	flour mill.		
= ∴ σ CHE 1. The data wr Wee	$100 \left[\frac{753}{230} - \left(\frac{12}{23} \right)^{-1} \right]$ = $+\sqrt{298} = 17.3$ CK YOUR P Fitten below gives kly earning (in Rs 80 - 100 100 - 120 120 - 140 140 - 160 160 - 180 180 - 200 200 - 220 220 - 240	$\left[\frac{5}{30}\right]^{2} = 1$ (approx) ROGRE the daily ea (a)	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20 25 40 80 65 60 35	= 298 ers of a	flour mill.		
	$100 \left[\frac{753}{230} - \left(\frac{12}{23} \right)^{2} + \sqrt{298} \right] = 17.3$ CK YOUR P itten below gives kly earning (in Rs 80 - 100 100 - 120 120 - 140 140 - 160 160 - 180 180 - 200 200 - 220 220 - 240 240 - 260	$\frac{5}{30} \Big _{3}^{2} = 1$ (approx) ROGRE the daily ea (a)	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20 25 40 80 65 60 35 30	= 298 ers of a	flour mill.		
	$100 \left[\frac{753}{230} - \left(\frac{12}{23} \right)^{2} + \sqrt{298} \right] = 17.3$ CK YOUR P Fitten below gives kly earning (in Rs 80 - 100 100 - 120 120 - 140 140 - 160 160 - 180 180 - 200 200 - 220 220 - 240 240 - 260 260 - 280	$\left[\frac{5}{30}\right]^{2} = 1$ (approx) ROGRE the daily ead (a)	.00 (3.27 – 0.29) SS 17.6 rnings of 400 work No. of Workers 16 20 25 40 80 65 60 35 30 20	= 298 ers of a	flour mill.		

2.

The data on ages of teachers working in a school of a city are given below:

Age (in years)	20-25	25-30	30-35	35-40
No. of teachers	25	110	75	120
Age (in years)	40-45	45-50	50-55	55-60
No. of teachers	100	90	50	30

Calculate the variance and standard deviation using step deviation method.

3. Calculate the variance and standard deviation using step deviation method of the following data :

Age (in years)	25-30	30-35	35-40
No. of persons	70	51	47
Age (in years)	40 - 50	45-50	50-55
No. of persons	31	29	22

17.11 PROPERTIES OF VARIANCE AND STANDARD DEVIA TION

Property I : The variance is independent of change of origin.

To verify this property let us consider the example given below.

Example : 17.16 The marks of 10 students in a particular examination are as follows:

10 12 15 12 16 20 13 17 15 10

Later, it was decided that 5 bonus marks will be awarded to each student. Compare the variance and standard deviation in the two cases.

Solution : Case – I

x _i	$\mathbf{f}_{\mathbf{i}}$	$f_i x_i$	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$f_{i}\left(x_{i}^{}-\overline{x}\right)^{2}$
10	2	20	- 4	16	32
12	2	24	-2	4	8
13	1	13	- 1	1	1
15	2	30	1	1	2
16	1	16	2	4	4
17	1	17	3	9	9
20	1	20	6	36	36
	10	140			92
Here		$\overline{\mathbf{x}} = \frac{140}{10} = 14$	ŀ		

Variance

$$=\frac{\sum \left[f_{i} \left(x_{i} - \overline{x} \right)^{2} \right]}{10}$$

$$=\frac{92}{10}=9.2$$

Standard deviation = $+\sqrt{9.2} = 3.03$

Case – II	(By	adding	5	marks	to	each	Xi)
-----------	-----	--------	---	-------	----	------	----	---

x _i	$\mathbf{f}_{\mathbf{i}}$	$f_i x_i$	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$f_{i}\left(x_{i}^{}-\overline{x}\right)^{2}$
15	2	30	-4	16	32
17	2	34	-2	4	8
18	1	18	-1	1	1
20	2	40	1	1	2
21	1	21	2	4	4
22	1	22	3	9	9
25	1	25	6	36	36
	10	190			92
			$\overline{x} = \frac{190}{10} = 10$)	

$$\overline{x} = \frac{190}{10} = 19$$

Variance $= \frac{92}{10} = 9.2$

:..

Standard deviation = $+\sqrt{9.2} = 3.03$

Thus, we see that there is no change in variance and standard deviation of the given data if the origin is changed i.e., if a constant is added to each observation.

Property II : The variance is not independent of the change of scale.

Example 17.17 In the above example, if each observation is multiplied by 2, then discuss the change in variance and standard deviation.

Solution : In case-I of the above example, we have variance = 9.2, standard deviation = 3.03. Now, let us calculate the variance and the Standard deviation when each observation is multiplied by 2.

x _i	$\mathbf{f}_{\mathbf{i}}$	$f_i x_i$	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$f_i \left(x_i - \overline{x} \right)^2$
20	2	40	-8	64	128
24	2	48	-4	16	32
26	1	26	-2	4	4
30	2	60	2	4	8
32	1	32	4	16	16
34	1	34	6	36	36
40	1	40	12	144	144
	10	280			368

Notes

$$\overline{\mathbf{x}} = \frac{280}{10} = 28$$
, Variance $= \frac{368}{10} = 36.8$

Standard deviation $= +\sqrt{36.8} = 6.06$

Here we observe that, the variance is four times the original one and consequently the standard deviation is doubled.

In a similar way we can verify that if each observation is divided by a constant then the variance of the new observations gets divided by the square of the same constant and consequently the standard deviation of the new observations gets divided by the same constant.

Property III : Prove that the standard deviation is the least possible root mean square deviation.

Proof: Let $\overline{x} - a = d$

By definition, we have

$$\begin{split} s^2 &= \frac{1}{N} \sum \left[f_i \left(x_i - a \right)^2 \right] = \frac{1}{N} \sum \left[f_i \left(x_i - \overline{x} + \overline{x} - a \right)^2 \right] \\ &= \frac{1}{N} \sum f_i \left[\left(x_i - \overline{x} \right)^2 + 2 \left(x_i - \overline{x} \right) (\overline{x} - a) + (\overline{x} - a)^2 \right] \\ &= \frac{1}{N} \sum f_i \left(x_i - \overline{x} \right)^2 + \frac{2}{N} (\overline{x} - a) \sum f_i \left(x_i - \overline{x} \right) + \frac{(\overline{x} - a)^2}{N} \sum f_i \\ &= \sigma^2 + 0 + d^2 \end{split}$$

: The algebraic sum of deviations from the mean is zero

or $s^2 = \sigma^2 + d^2$

Clearly s^2 will be least when d = 0 i.e., when $a = \overline{x}$.

Hence the root mean square deviation is the least when deviations are measured from the mean i.e., the standard deviation is the least possible root mean square deviation.

Property IV : The standard deviations of two sets containing n_1 , and n_2 numbers are σ_1 and σ_2 respectively being measured from their respective means m_1 and m_2 . If the two sets are grouped together as one of $(n_1 + n_2)$ numbers, then the standard deviation σ of this set, measured from its mean m is given by

$$\sigma^{2} = \frac{n_{1}\sigma_{1}^{2} + n_{2}\sigma_{2}^{2}}{n_{1} + n_{2}} + \frac{n_{1}n_{2}}{(n_{1} + n_{2})^{2}}(m_{1} - m_{2})^{2}$$

Example 17.18 The means of two samples of sizes 50 and 100 respectively are 54.1 and 50.3; the standard deviations are 8 and 7. Find the standard deviation of the sample of size 150 by combining the two samples.

Solution : Here we have

$$n_{1} = 50, n_{2} = 100, m_{1} = 54.1, m_{2} = 50.3$$

$$\sigma_{1} = 8 \text{ and } \sigma_{2} = 7$$

$$\sigma^{2} = \frac{n_{1}\sigma_{1}^{2} + n_{2}\sigma_{2}^{2}}{(n_{1} + n_{2})^{2}} + \frac{n_{1}n_{2}}{(n_{1} + n_{2})^{2}} (m_{1} - m_{2})^{2}$$

$$= \frac{(50 \times 64) + (100 \times 49)}{150} + \frac{50 \times 100}{(150)^{2}} (54.1 - 50.3)^{2}$$

$$= \frac{3200 + 4900}{150} + \frac{2}{9} (3.8)^{2} = 57.21$$

$$\therefore \qquad \sigma = 7.56 \text{ (approx)}$$
Example 17.19 Find the mean deviation (M.D) from the mean and the standard deviation (S.D) of the A.P.
a, a + d, a + 2 d,....,a + 2n.d
and prove that the latter is greater than the former.
Solution : The number of items in the A.P. is (2n + 1)

$$\therefore \qquad \overline{x} = a + nd$$
Mean deviation about the mean

$$= \frac{1}{(2n + 1)} \sum_{r=0}^{2n} |(a + rd) - (a + nd)|$$

$$= \frac{1}{(2n + 1)} \cdot 2[nd + (n - 1)d + \dots + d]$$

Now

...

...

$$\sigma^{2} = \frac{1}{(2n+1)} \sum_{r=0}^{2n} \left[(a + rd) - (a + nd) \right]^{2}$$
$$= \frac{2d^{2}}{(2n+1)} \left[n^{2} + (n-1)^{2} + \dots + 2^{2} + 1^{2} \right]$$

 $=\frac{2n(n+1)}{(2n+1)2}.d = \frac{n(n+1)d}{(2n+1)}(1)$

 $=\frac{2}{(2n+1)}[1+2+....+(n-1)+n]d$

MATHEMATICS

MODULE - V Statistics and Probability

$$=\frac{2d^2}{(2n+1)}\cdot\frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)d^2}{3}$$
$$\sigma = d.\sqrt{\left(\frac{n(n+1)}{3}\right)} \qquad \dots \dots (2)$$

.....(2)

Notes We have further, (2) > (1)

...

$$d\sqrt{\left(\frac{n(n+1)}{3}\right)} > \frac{n(n+1)}{(2n+1)}d$$

 $(2n+1)^2 > 3n(n+1)$

or if

if

 $n^2 + n + 1 > 0$, which is true for n > 0or if

Hence the result.

Example 17.20 Show that for any discrete distribution the standard deviation is not less than the mean deviation from the mean.

Solution : We are required to show that

 $S.D. \ge M.D.$ from mean

 $(S. D)^2 \ge (M.D. \text{ from mean})^2$

$$\frac{1}{N} \sum \left[f_i \left(x_i - \overline{x} \right)^2 \right] \ge \left[\frac{1}{N} \sum \left[f_i \left| \left(x_i - \overline{x} \right) \right| \right] \right]^2$$

or

or

or

or

i.e.

$$\frac{1}{N} \sum \left[\left. f_i d_i^2 \right. \right] \ge \left[\left. \frac{1}{N} \sum \left[\left. f_i \left| d_i \right| \right] \right]^2 \right], \text{ where } d_i = x_i - \overline{x}$$

$$N\sum \left(\left. f_{i}d_{i}^{2} \right. \right) \geq \left[\left. \sum \left\{ \left. f_{i} \right. \left| d_{i} \right. \right| \right\} \right]^{2}$$

$$(f_1 + f_2 +)(f_1d_1^2 + f_2d_2^2 +) \ge [f_1|d_1| + f_2|d_2| +]^2$$

or

or

$$f_1 f_2 \left(d_1^2 + d_2^2 \right) + \dots \ge 2 f_1 f_2 d_1 d_2 + \dots$$

 $f_1 f_2 (d_1 - d_2)^2 + \dots \ge 0$

which is true being the sum of perfect squares.

17.12 ANALYSIS OF FREQUENCY DISTRIBUTIONS WITH EQUAL MEANS

The variability of two series with same mean can be compared when the measures of variation are absolute and are free of units. For this, coefficient of variation (C.V.) is obtained which is defined as

$$C.V. = \frac{\sigma}{\overline{x}} \times 100, \, \overline{x} \neq 0$$

where σ and \overline{x} are standard deviation and mean of the data. The coefficients of variation are compared to compare the variability of two series. The series with greater C.V. is said to be more variable than the other. The series having less C.V. is said to be more consistent than the other.

For series with same means, we can have

C.V. (1st distribution) =
$$\frac{\sigma_1}{\overline{x}} \times 100$$
 ...(1)

C.V. (2nd distribution) =
$$\frac{\sigma_2}{\overline{x}} \times 100$$
 ...(2)

where σ_1 , σ_2 are standard deviation of the Ist and 2nd distribution respectively, \overline{x} is the equal mean of the distributions.

From (1) and (2), we can conclude that two C.V.'s can be compared on the basis of the values of σ_1 and σ_2 only.

Example 17.21 The standard deviation of two distributions are 21 and 14 and their equal mean is 35. Which of the distributions is more variable?

Solution : Let $\sigma_{1} = \text{Standard dev. of 1st series} = 21$ $\sigma_{2} = \text{Standard dev. of 2nd series} = 14$ $\overline{x} = 35$ C.V. (Series I) = $\frac{\sigma_{1}}{\overline{x}} \times 100 = \frac{21}{35} \times 100 = 60$ C.V. (Series II) = $\frac{\sigma_{1}}{\overline{x}} \times 100 = \frac{14}{35} \times 100 = 40$

C.V. of series I > C.V. of series II

 \Rightarrow Series with S.D = 21 is more variable.

403

MODULE - V Statistics and Probability

Notes

Example 17.22 Monthly wages paid to workers in two factories A and B and other data are given below :

	Factory A	Factory B
Mean of monthly wages	` 15550	` 15550
Variance of the distribution of wages	100	121

Which factory A or B shows greater variablility in individual wages? **Solution :** Given

 $\sigma_{A} = \sqrt{\text{variance}} = \sqrt{100} = 10$ $\sigma_{B} = \sqrt{\text{variance}} = \sqrt{121} = 11$ $\overline{x} = 15550$ C.V. (A) = $\frac{\sigma_{A}}{\overline{x}} \times 100 = \frac{10}{15550} \times 100$

= 0.064

Now,

C.V.(B) =
$$\frac{\sigma_B}{\overline{x}} \times 100 = \frac{11}{15550} \times 100 = 0.07$$

Clearly C.V. (B) > C.V.(A)

: Factory B has greater variability in the individual wages.

Example 17.23 Which of the following series X or Y is more consistent?

X	58	52	50	51	49	35	54	52	53	56
Y	101	104	103	104	107	106	105	105	107	108

Solution : From the given data we have following table

X	Y	$D_i = X - \overline{X}$	${D_i}^2$	$d_i = Y - \overline{Y}$	d_i^2
58	101	7	49	-4	16
52	104	1	1	-1	1
50	103	-1	1	-2	4
51	104	0	0	-1	1
49	107	-2	4	2	4
35	106	-16	256	1	1
54	105	3	9	0	0
52	105	1	1	0	0
53	107	2	4	2	4
56	108	5	25	3	9
$\Sigma X = 510$	$\Sigma Y = 1050$		$\Sigma \overline{\mathrm{D}_i^2} = 350$		$\Sigma d_i^2 = 40$

MATHEMATICS

404

Now,

$$\overline{X} = \frac{\Sigma X_i}{10} = \frac{510}{10} = 51$$
$$\overline{Y} = \frac{\Sigma Y_i}{10} = \frac{1050}{10} = 105$$
$$\sigma_x = \sqrt{\frac{\Sigma (X - \overline{X})^2}{N}} = \sqrt{\frac{\Sigma D_i^2}{N}} = \sqrt{\frac{350}{10}}$$
$$= 5.9$$
$$\sigma_y = \sqrt{\frac{\Sigma (Y - \overline{Y})^2}{N}} = \sqrt{\frac{\Sigma d_i^2}{N}} = \sqrt{\frac{40}{10}} = 105$$

2

Now,

C.V.(X) =
$$\frac{\sigma_X}{X} \times 100 = \frac{5.9}{51} \times 100 = 11.5$$

C.V.(Y) =
$$\frac{\sigma_Y}{Y} \times 100 = \frac{2}{105} \times 100 = 1.9$$

Clearly C.V.(Y) < C.V.(X) \therefore Series Y is more consistent.

CHECK YOUR PROGRESS 17.7

1. From the data given below which section is more variable?

Marks	0-10	10-20	20-30	30-40	40-50
Section A	9	10	40	33	8
Section B	8	15	43	25	9

2. Which of the factory give better consistent wages to workers?

Wages (in `) per day	100-150	150-200	200-250	250-300	300-350
Factory A	35	45	50	42	28
Factory B	16	50	55	13	46

3. Two schools show following results of board examination in a year

	School A	School B
Average Marks Obtained	250	225
No. of Students Appeared	62	62
Variance of distribution of marks	2.25	2.56

Which school has greater variability in individual marks?

MODULE - V Statistics and Probability

LET US SUM UP

Range : The difference between the largest and the smallest value of the given data.

 $\text{Mean deviation from mean} = \frac{\sum_{i=1}^{n} (f_i |x_i - \overline{x}|)}{N^T}$ Notes where $N = \sum_{i=1}^{n} f_i$, $\overline{x} = \frac{1}{N} \sum_{i=1}^{n} (f_i x_i)$ Mean deviation from median $=\frac{\sum_{i=1}^{n} fi |x_i - m|}{\sum_{i=1}^{n} fi |x_i - m|}$ Where $N = \frac{\sum_{i=1}^{n} fi}{N}$, $M = l + \frac{\frac{N}{2} - C}{f} \times i$ Variance $(\sigma^2) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$ [for raw data] Standard derivation $(\sigma) = +\sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{2}}$ Variance for grouped data $\sigma_{g}^{2} = \frac{\sum_{i=1}^{k} \left[f_{i} \left(x_{i} - \overline{x} \right)^{2} \right]}{N}, x_{i} \text{ is the mid value of the class.}$ Also, $\sigma_x^2 = h^2 \sigma_u^2$ and $\sigma_u^2 = \frac{1}{N} \sum_{i=1}^k \left[f_i \left(u_i - \overline{u}^2 \right) \right]$ $N = \sum_{i=1}^{k} f_i$

MATHEMATICS

$$\sigma_{u}{}^{2} = \frac{\sum_{i=1}^{k} \left(f_{i}{u_{i}}^{2} \right) - \frac{\left[\sum_{i=1}^{k} \left(f_{i}{u_{i}}^{2} \right) \right]^{2}}{N}}{N} \quad \text{where } N = \sum_{i=1}^{k} f_{i}$$

or

• Standard deviation for grouped data $\sigma_g = +\sqrt{\sigma_g^2}$

• If two frequency distributions have same mean, then the distribution with greater Coefficient of variation (C.V) is said to be more variable than the other.

SUPPORTIVE WEB SITES

http://en.wikipedia.org/wiki/Statistical_dispersion simon.cs.vt.edu/SoSci/converted/Dispersion_I/activity.html

TERMINAL EXERCISE

1.	Find the mean devi 10 students in a tes		eviatio test	n for th	e follov	ving data	a of ma	rks ob	taineo	d (out of 100)	by
	55	45	63	76	67	84	75	48	62	65	
2.	The data	below p	resents	s the ear	nings of	50 labou	rers of	a factor	ſy		
	Earnings	(in Rs.)	12	200	1300	1400	1500) 16	00	1800	
	No. of L	abourers	5	4	7	15	12	7	7	5	
	Calculate	e mean de	eviation	1.							
3.	The sala	ry per da	y of 50	employ	vees of a	factory is	s given	by the f	follow	ving data.	
	Salary (i	n Rs.)	2	0-30	30-	40	40-50	5	50-6	0	
	No. of e	mployee	S	4	6		8		12		
	Salary (i	n rupees)	6	0 - 70	70-	80	80-90	9	0-10	00	
	No. of e	mployee	S	7	6		4		3		
	Calculate	e mean de	eviation	1.							
4. Find the batting average and mean deviation for the following da of a cricket player:							ing data	a of sc	cores of 50 inni	ngs	
	Run Sco	red	C)-20	20-	-40	40-	60	60-	-80	
	No. of I	nnings		6	1	0	12		1	8	
	Run scor	red	80)-100	100-	-120					
	No. of in	nnings		3	1						

		Measures of Dispers									Dispersion		
MODULE - V	5.	The marks of 10 students in a test of Mathematics are given below:											
Statistics and Probability		6	10	12	13	15	20	24	28	30	32		
		Find the	e varianco	e and sta	undard	deviati	on of the	above da	ata.				
	6.	The foll	owing tal	ble gives	the ma	asses in	grams to	the neare	est gram	, of a san	ple of 10 eggs.		
Notes		46	51	48	62	54	56	58	60	71	75		
		Calculate the standard deviation of the masses of this sample.											
	7.	The wee	ekly inco	me (in	rupees) of 50	workers	of a facto	ory are g	given bel	ow:		
		Income	Income		00	425	450	500	550	600	650		
		No of w	orkers	-	5	7	9	12	7	6	4		
		Find the variance and standard deviation of the above data.											
	8.	Find the variance and standard deviation for the following data:											
		Class		0-	-20	20-40	0 40-60	60-8	80 80-	-100			
		Frequer	ncy	-	7	8	25	15	4	5			
	9.	Find the standard deviation of the distribution in which the values of x are 1,2,, N. The frequency of each being one											
	1 ne following values are calculated in respect of heights and weights of stude												
	10. I ne following values are calculated in respect of neights and weights of students :												
					Weight	-	Heigh	nt					
		Mean		5	2.5 K	.g 160.5		5 cm					
		Standar	d Dev.		11.5		12.2						
		Which of the attribute weight or height show greater variation?											
	11.	The following are the wickets taken by a bowler in 20 matches, for Player A											
		No. of	Wickets		0		1	2	3		4		
		No. of	Matche	8	2		6	7	4		1		
		For the bowler B, mean number of wickets taken in 20 matches is 1.6 with standard											
	deviation 1.25. Which of the players is more consistent?												
	Finc	the medi	an of the	followi	ng disi	tributio	ns (12-14	+): 					
	12.	x _i	14	20	20	6	29	34	46)			
		J_i	4	6	7	1	8	9	6				
	13.	Age (in y	years)	15-1	9	20-2	24	25-29	30	-34	35-39		
		Number		8		7		9]	11	5		

M	easures	of Disper	sion									
14.	14. Height (in cm)		95-104		105-114		115-124		125-134	135	5-144	MODULE - V
	Numbe	Number of Boys 10 8			18		8		16	Statistics and Probability		
Find mean deviation from median (15-18) :												7
15.	x _i	5	15	2	5 35		45		55			
	f_i	5	23	3	0 2	20	16		6			Notes
16.	x _i	105	107	10)9 1	11	113		115			
	f_i	8	6	2	2 2		2		6			
17.	Incom (` in '(e (per mor)00)	nth) ()-5	6-10		11-15		16-20	21	1-25	
	Numb	er of Perso	ons	5	6		12		14		26	
18.	Age (i	n years)	0-5	6-10	11-15	16-2	20 21-2	5	26-30	31-35	36-40	
	No. of	f Persons	5	6	12	14	26		32	16	29	
E	AN	SWER:	S									
Cl	CHECK YOUR PROGRESS 17.1											
1.	15		2. 22	2	3. 9.4			4.	15.44			
5.	13.7		6. 13	6	7. 5.0	1		8.	14.4			
Cl	HECK	YOUR	PRC	OGRE	SS 17.2							
1.	16		2. 15	5	3.15.3	5 mar	ks	4.	28 years	S		
Cl	HECK	YOUR	PRC	OGRE	SS 17.3							
1.	1.85		2. 2.	36	3. 37	3		4. (0.977			
СН	ECK	YOUR	PRO	GRES	SS 17.4							
1.	Variar	nce = 311,	Stand	lard dev	viation = 1	7.63						
2.	Variance = 72.9 , Standard deviation = 8.5											
3.	Variance = 42.6 , Standard deviation = 6.53											
4.	Standa	ard deviati	on = 4									
5.	Variance = 13.14 , Standard deviation = 3.62											
6.	6. Standard deviation = 17.6											
MAT	HEMATI	ICS										409

MODULE - V	CHECK YOUR PROGRESS 17.5													
Statistics and Probability	1. Variance = 734.96 , Standard deviation = 27.1													
	2.	Variance = 12.1	5, Stand	ard deviation =	3.49									
	3. Variance = 5489, Standard deviation = 74.09													
Notes	CHI	ECK YOUR	PROG	RESS 17.6										
	1.	1. Variance = 2194 , Standard deviation = 46.84												
	2.	2. Variance = 86.5 , Standard deviation = 9.3												
	3. Variance = 67.08 , Standard deviation = 8.19													
	CHECK YOUR PROGRESS 17.7													
	1. Section A													
	2. Factory A													
	3. School B													
	TERMINAL EXERCISE													
	1.	9.4 2. 124.48 3. 15.44 4. 52, 19												
	5.	Variance = 72.2	Variance = 72.29 , Standard Deviation = 8.5 6. 8.8											
	7.	7. Variance = 5581.25, Standard Deviation = 74.7 8. Variance = 840, Standard Deviation = 28.9 9. Standard deviation = $\sqrt{\frac{N^2 - 1}{12}}$												
	8.													
	9.													
	10.	Weight	11.	Player B	12.	29	13.	27.27						
	14.	121.16	15.	10.3	16.	3.38	17.	5.2						
	18.	0.62												

L