National Institute of Open Schooling (NIOS)

 Secondary Course

 Secondary Course
 Lesson -23: Trigonometry Ratios of Some Special Angles Worksheet - 23

1. In triangle ABC , If $\mathrm{A}=30^{\circ}$ verify that $\sin 3 \mathrm{~A}=3 \sin \mathrm{~A}-4 \sin ^{3} \mathrm{~A}$
2. If $\cos -\quad=\sqrt{ } \quad$ then prove that $\cos +\quad=\sqrt{ }$
3. If $1+\sin ^{2}=\quad \tan =\frac{1}{2}$
4. The angle of elevation of the top of a tower is 30 m high from the foot of another tower in the same plane is 60°, and the angle of elevation of the top of the second tower from the foot of the fist tower is 30°. Find the distance between the two towers and also the height of the other tower.
5. Prove that: $(\sin x+\cos x)(\tan x+\cot x)=\sec x+\operatorname{cosec} x$.
6. Evaluate: $\frac{\sec 29^{\circ}}{\operatorname{cosec} 61^{0}}+2 \cot 8^{\circ} \cot 17^{\circ} \cot 45^{\circ} \cot 73^{\circ} \cot 82^{\circ}$
7. Simplify:

8. If $\tan =\frac{1}{\sqrt{5}}$ find the value of $\frac{\operatorname{cosec}^{2}-{ }^{2}}{\operatorname{cosec}^{2}+{ }^{2}}$
9. In a triangle ABC angle A is 30°, verify that $\operatorname{Sin} 3 \mathrm{~A}=3 \operatorname{Sin} \mathrm{~A}-4 \operatorname{Sin}^{3} \mathrm{~A}$
10. The shadow of a Building, when the angle of elevation of the Sun is 45^{0} is found to be 15 metres longer than when it was 60°. Find the height of the Building.
