National Institute of Open Schooling (NIOS)
 Secondary Course
 Lesson -17: Secants, Tangents and their Properties
 Worksheet - 17

1. Prove that from an external point only two tangents can possible to drawn and the length of these two tangents is same.
2. From the external point P two tangents PT1 and PT2 are at a distance of 10 cm from the centre of the circle whose radius is 6 cm . Find the length of two tangents PT1 and PT2.
3. If $\mathrm{AB}, \mathrm{AC}, \mathrm{PQ}$ are tangents and $\mathrm{AB}=5 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{APQ}$.
4. In figure, PA and PB are tangents from an external point P to a circle with center O . LN touches the circle at M . prove that $\mathrm{PL}+\mathrm{LM}=\mathrm{PN}+\mathrm{MN}$

5. In the figure, PAB is a secant and PT is a tangent to the circle from an external point P . If PT $=x \mathrm{~cm}, \mathrm{PA}=4 \mathrm{~cm}$ and $\mathrm{AB}=5 \mathrm{~cm}$, find x .

6. Prove that angles formed in the alternate segments by a chord through the point of contact of a tangent to a circle are equal to the angles between the chord and the tangent.
7. If PAB is a secant to a circle intersecting the circle at A and B, PQ is a tangent to the circle at Q , then prove that $\mathrm{PA} \times \mathrm{PB}=\mathrm{PQ}^{2}$
8. Two circles touch externally at a point P , from a external point T a tangent TP is drawn. T tangents TQ and TR are drawn to the circles with points of contact Q and R respectively. Prove that TQ = TR
9. If PT and PS are tangents to a circle from an outside point P . such that $\mathrm{PT}=8 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$. Find the length of chord AB.
10. A tangent PT of a circle of radius 3 cm meets a line through the centre O at the point Q so that $\mathrm{OQ}=5 \mathrm{~cm}$. find the length of PT.
