National Institute of Open Schooling (NIOS) Secondary Course
 Lesson -12: Concurrent Lines
 Worksheet - 12

1. Differentiate between Incentre and Circumcentre of triangle with an example.
2. In a triangle ABC , the medians AD, BE and CF intersect at G . Prove that $\mathrm{BE}+\mathrm{CF}>\frac{3}{2}$ BC.
3. If the bisectors of angles $\angle \mathrm{B}$ and $\angle \mathrm{C}$ of a triangle ABC meet at a point O , then prove that $\angle \mathrm{BOC}=90^{\circ}+\frac{1}{2} \angle \mathrm{~A}$
4. Differentiate between Orthocentre and Centroid of triangle with an example.
5. In $\triangle \mathrm{ABC}$ the medians AD, BE and CF pass through G . If $\mathrm{BG}=6 \mathrm{~cm}$, then find BE ?

6. In the given figure $\mathrm{BF}=\mathrm{FC}, \angle \mathrm{BAE}=\angle \mathrm{CAE}$ and $\angle \mathrm{ADE}=\angle \mathrm{GFC}=90^{\circ}$ then name a median, an angle bisector, an altitude and a perpendicular bisector of the Δ.

7. Prove that the sum of the three angles of any triangle is equal to 180°
8. If the medians AD, BE and CF of $\triangle \mathrm{ABC}$ meet at G , prove that G is the centroid of $\triangle \mathrm{DEF}$ also.
9. ABC is a triangle in which P, Q and R are mid points of the sides AB, BC and CA respectively. If $A B=8 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{CA}=6 \mathrm{~cm}$, find the perimeter of DPQR .
10. Draw an equilateral triangle. Find its Incentre ,circumcentre and its incircle and circumcircle.
