QUADRATIC EQUATIONS

- Quadratic polynomial: A polynomial of degree2
- Quadratic equation: An equation having degree 2.
- General form of a quadratic equation: ax^{2} $+b x+c=0, a \neq 0$ where a, b, c are real numbers and x is a variable.
- Roots of a quadratic equation: Values of variable which satisfy a quadratic equation. α is a root of the quadratic equation $a x^{2}+b x+c=0$, if $a \alpha^{2}+b \alpha+c=0$.
A quadric equation has two roots.
Zeros of a quadratic polynomial and the roots of the corresponding quadratic equation are the same.
- Methods for solution of quadratic equation:
(i) Factor method
(ii) Using the quadratic formula
- Factor method of solving $a x^{2}+b x+c=0$, $\mathbf{a} \neq \mathbf{0}$: Factorise $a x^{2}+b x+c, a \neq 0$ into a product of two linear factors. Equate each factor to zero and get the values of the variable.

These values are the required roots of the given quadratic equation.

- Quadratic formula : The roots of the equation $a x^{2}+b x+c=0$ are

$$
\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \text { and } \frac{-\mathrm{b}-\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

- Discriminant:The expression $b^{2}-4 a c$ is called discriminant of the equation $a^{2}+b x+c=0$ and denoted by D.
- Nature of Roots : A quadratic equation

$$
a x^{2}+b x+c=0(a \neq 0) \text { has }
$$

(i) two distinct real roots if $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}>0$
(ii) two equal (or coincident) and real roots if $D=b^{2}-4 a c=0$
(iii) no real root if $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}<0$.

- Word Problems or daily life problems: To solve a word problem using quadratic equations convert the given problem in the form of a quadratic equation and then solve the equation by using factor method or quadratic formula.

CHECK YOUR PROGRESS:

1. Which of the following is not a quadratic equation?
(A) $(x-1)(x+3)=6$
(B) $x+\frac{1}{x}=7$
(C) $3 x^{2}-5 x+2=0$
(D) $x^{2}+2 \sqrt{x}+3=0$
2. If the quadratic equation $3 x^{2}+m x+2=0$ has real and equal roots, then the value of m is :
(A) $-\sqrt{6}$
(B) $\sqrt{6}$
(C) $\frac{\sqrt{6}}{2}$
(D) $\pm 2 \sqrt{6}$
3. The discriminant of the quadratic equation $5 x^{2}-6 x-2=0$ is :
(A) 56
(B) 66
(C) 76
(D) 86
4. If one root of the quadratic equation $x^{2}-\alpha x-5=0$ is 5 then the other root is :
(A) -1
(B) 1
(C) $-\alpha$
(D) α
5. Roots of the quadratic equation $x^{2}-14 x+45=0$ are:
(A) real and equal
(B) real and distinct
(C) not real
(D) none of these
6. Solve the following equations by factor method:
(i) $x^{2}+3 x=18$
(B) $2 x^{2}+5 x-3=0$
7. Solve the follwoing quadratic equations using quadratic formula:
(i) $3 x^{2}-4 x-7=0$
(ii) $6 x^{2}-19 x+15=0$
8. The sum of the ages (in years) of a father and his son is 60 and the product of their ages is 576 . Find their ages.
9. Find two consecutive odd positive integers if the sum of their squares is 290.
10. The product of the digits of a two digit number is 12 . When 9 is added to the number, the digits interchange their places. Find the number.

STRETCHYOUSELF

1. If -5 is a root of the quadratic equation $2 \mathrm{x}^{2}+\mathrm{px}-15=0$ and the quadratic equaion $\mathrm{P}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\mathrm{k}=0$ has equal roots, find the value of K.
2. Find the value of K for which the quadratic equation $x^{2}-4 x+K=0$ has two real and distinct roots.
3. Solve the equation:

$$
\frac{x}{x+1}+\frac{x+1}{x}=\frac{34}{15}, x \neq 0,-1 .
$$

4. If $x=2$ and $x=3$ are the roots of the equation $3 x^{2}-2 k x+2 m=0$, find the values of k and m.
5. Find the value of k for which the quadratic equation $x^{2}-2 x(1+3 k)+7(3+2 k)=0$ has real and eqaul roots.

ANSWERS

CHECK YOUR PROGRESS :

1. D
2. D
3. C
4. A
5. B
6. (i) $3,-6$
(ii) $\frac{1}{2},-3$
7. (i) $-1, \frac{7}{3}$
8. Father's age $=48$ years, son's is age $=12$ years.
9. $11,13 \quad 10.34$

STRETCHYOURSELF:

1. $\frac{7}{4}$
2. $\mathrm{K}<4$
3. $\left(\frac{-5}{2}, \frac{3}{2}\right)$
4. $\mathrm{k}=\frac{15}{2}, \mathrm{~m}=9$
5. $\mathrm{k}=2$ or $\mathrm{k}=\frac{-10}{9}$
