1 NUMBER SYSTEM

- Natural Numbers (N): Counting numbers 1, 2, 3, 4,Smallest natural number is 1
- Whole Numbers (W): Natural numbers including 0 i.e. 0, 1, 2, 3, 4 Smallest whole number is 0
- Integers (I): Whole numbers including negatives of natural numbers i.e.-3, -2, -1, 0, 1, 2, 3
- Number Line : Line on which numbers are represented i.e. $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{0}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$
- **Rational Numbers (Q):** Number p/q is a rational number if p and q are integers and $q \neq 0$.
- **Standard form of a rational number:** p/q is said to be in standard form if q is positive and p and q are co-primes.

Important Result : Every integer is a rational number but every rational number is not an integer. Every fraction is a rational number but vice-versa is not always true

• Equivalent form of a rational number : Two

rational numbers $\frac{p}{q}$ and $\frac{r}{s}$ are said to be equivalent if ps = rq

- Rational numbers on number line: Every rational number can be represented on a number line. Coresponding to each rational number, there exists a unique point on the number line but converse is not always true.
- **Comparision of rational numbers :** Reduce the numbers with the same denominator and compare their numerators. On a number line the greater rational number lies to the right of the smaller.

• Addition of rational numbers:

If $\frac{a}{b}$ and $\frac{c}{b}$ are two rational numbers then $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$. For $\frac{a}{b}$ and $\frac{c}{d}$, $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$, for rational numbers p and q, p + q = q+p, for rational number

p, p+0=p=0+p.

• Subtraction of rational numbers: For two rational numbers

$$\frac{a}{b}and\frac{c}{b}, \frac{a}{b} - \frac{c}{b}, = \frac{a + (-c)}{b}, \text{ for}$$

$$\frac{a}{b}and\frac{c}{d} = \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}, \text{ for p and q},$$

 $p - q \neq q$ -p, for rational number p, p - 0 = p

- Multiplication of rational Numbers: For
 - two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$, for rational numbers p and q we have $p \times q = q \times p$, For rational number p, $p \times 0 = 0$, $p \times 1 = p$
- **Division of Rational numbers:** For two rational numbers

$$\frac{a}{b}$$
 and $\frac{c}{d}$, $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$

For rational numbers p and q, $p \div q \neq q \div p$, for rational number p, $p \div 1 = p$, $p \div (-1) = -p$, $p \div p = 1$, $p \div (-p) = -1$

• Decimal representation of rational numbers: Process of expressing a rational number into decimal form is to carry out the process of long division using decimal.

Rational number is either a terminating decimal or a non-terminating repreating decimal.

• Rational numbers between two rational numbers: There exists infinitely many rational numbers between two rational numbers.

A rational number between two rational numbers can be found by calculating the average of given numbers.

• Irrational numbers: A decimal expression which is neither terminating nor repeating represents an irrational number.

Numbers other than rational numbers $\sqrt{2}, \sqrt{3}, \sqrt{5}.0.12345...}$, etc are examples of irrational numbers.

- **Real Numbers:** Rational and Irrational numbers together constitute the system of real.
- Irrational number between two rational numbers: If q₁ and q₂ are two rational numbers

then an irrational number between them is

 $\sqrt{q_1 \times q_2}$, Where $q_1 \times q_2$ is not a perfect square. If $q_1 \times q_2$ is a perfect square, then take a number q between q_1 and q_2 such that $q_1 \times q$ or $q \times q_2$ are not perfect squares

 $\Rightarrow \sqrt{q_1 \times q} \text{ or } \sqrt{q \times q_2} \text{ is the required}$ irrational number.

- Irrational number between a rational and irrational number or between two irrational numbers: Average of both numbers
- Rounding off numbers: To round off a number to a given number of decimal places, observe the next digit in the decimal part of the number and proceed as under, if the digit is 5 or more than 5, we add 1 to the precedding digit.

If the digit is less than 5, ignore it.

CHECK YOUR PROGRESS:

1.	The rational number $\frac{-21}{49}$ in lowest terms is :			
	(A) $\frac{3}{7}$	(B) $\frac{-3}{7}$	(C) $\frac{-7}{3}$	(D) –3
2.	$3.\overline{4}$ can be written in the form $\frac{p}{q}$ as:			
	(A) $\frac{13}{4}$	(B) $\frac{4}{3}$	(C) $\frac{9}{31}$	(D) $\frac{31}{9}$
3.	Number of rational numbers which lie between 2 and 7 is :			
	(A) 5	(B) 6	(C) 7	(D) Infinitely many
4.	An irrational number lying between $\sqrt{3}$ and 3 is:			
	(A) $\sqrt{4}$	(B) $\sqrt{10}$	(C) $\sqrt{5}$	(D) $2\sqrt{3}$
5.	Which of the following is not a rational number?			
	(A) $\frac{\sqrt{3}}{2}$	(B) 3	(C) $\frac{5}{2}$	(D) $\frac{-3}{5}$

- Find two rational numbers between 1.23 and 1.24. 6.
- Simplify: $(\sqrt{32} \times \sqrt{50}) \times \sqrt{72} \div 36\sqrt{8}$. 7.
- 8. Find three irrational numbers between 3 and 4.
- 9. Represent the following rational numbers on number line

(A)
$$\frac{7}{2}$$
 (B) $\frac{-18}{5}$

10. Represent the following irrational numbers on number line

(A)
$$\sqrt{3}$$
 (B) $\sqrt{7}$

STRETCH YOURSELF:

By finding the decimal representation of $\frac{22}{7}$, 1. 8 comment, is it rational or irrational? Find its apporoximate value up to three places of **STRETCH YOURSELF:** decimals. 2. Comment, 0 is a rational number or not. Justify your answer. 1. ANSWERS 2. **CHECK YOUR PROGRESS:** 1. В 2. D 3. D 4. C

5. A 6. 1.2325, 1.235 7.
$$\frac{10}{3}$$

8. $2\sqrt{3}$, $\frac{3+2\sqrt{3}}{2}$, $\sqrt{3}+2$

- $\frac{22}{7} = 3.\overline{142857}$, so it is a rational number, approximate value is 3.143.
- Yes, Zero is a rational number because 0

0 can be written as any non zero integer