NUMBER SYSTEM

- Natural Numbers (N): Counting numbers 1, $2,3,4, \ldots$. .Smallest natural number is 1
- Whole Numbers (W): Natural numbers including 0 i.e. $0,1,2,3,4$........ Smallest whole number is 0
- Integers (I): Whole numbers including negatives of natural numbers i.e.-3, -2, -1, 0, 1, 2, 3 \qquad ...
- Number Line : Line on which numbers are

- Rational Numbers (Q): Number p / q is a rational number if p and q are integers and $q \neq 0$.
- Standard form of a rational number: p / q is said to be in standard form if q is positive and p and q are co-primes.

Important Result : Every integer is a rational number but every rational number is not an integer. Every fraction is a rational number but vice-versa is not always true

- Equivalent form of a rational number : Two rational numbers $\frac{\mathrm{p}}{\mathrm{q}}$ and $\frac{\mathrm{r}}{\mathrm{s}}$ are said to be equivalent if $\mathrm{ps}=\mathrm{rq}$
- Rational numbers on number line: Every rational number can be represented on a number line. Coresponding to each rational number, there exists a unique point on the number line but converse is not always true.
- Comparision of rational numbers : Reduce the numbers with the same denominator and compare their numerators. On a number line the greater rational number lies to the right of the smaller.

- Addition of rational numbers:

If $\frac{a}{b}$ and $\frac{c}{b}$ are two rational numbers then
$\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{a}+\mathrm{c}}{\mathrm{b}}$. For $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$,
$\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{ad}+\mathrm{bc}}{\mathrm{bd}}$, for rational numbers
p and $\mathrm{q}, \mathrm{p}+\mathrm{q}=\mathrm{q}+\mathrm{p}$, for rational number
$p, p+0=p=0+p$.

- Subtraction of rational numbers: For two rational numbers
$\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{b}}, \frac{\mathrm{a}}{\mathrm{b}}-\frac{\mathrm{c}}{\mathrm{b}},=\frac{\mathrm{a}+(-\mathrm{c})}{\mathrm{b}}$, for
$\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{a}}{\mathrm{b}}-\frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{ad}-\mathrm{bc}}{\mathrm{bd}}$, for p and q ,
$\mathrm{p}-\mathrm{q} \neq \mathrm{q}-\mathrm{p}$, for rational number $\mathrm{p}, \mathrm{p}-0=\mathrm{p}$
- Multiplication of rational Numbers: For two rational numbers $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}, \frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{ac}}{\mathrm{bd}}$, for rational numbers p and q we have $\mathrm{p} \times \mathrm{q}=$ $q \times p$, For rational number $p, p \times 0=0, p \times 1$ $=\mathrm{p}$
- Division of Rational numbers: For two rational numbers
$\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}, \frac{\mathrm{a}}{\mathrm{b}} \div \frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{a}}{\mathrm{b}} \times \frac{\mathrm{d}}{\mathrm{c}}=\frac{\mathrm{ad}}{\mathrm{bc}}$
For rational numbers p and $\mathrm{q}, \mathrm{p} \div \mathrm{q} \neq \mathrm{q} \div \mathrm{p}$, for rational number $p, p \div 1=p, p \div(-1)=$ $-\mathrm{p}, \mathrm{p} \div \mathrm{p}=1, \mathrm{p} \div(-\mathrm{p})=-1$
- Decimal representation of rational numbers: Process of expressing a rational number into decimal form is to carry out the process of long division using decimal.

Rational number is either a terminating decimal or a non-terminating repreating decimal.

- Rational numbers between two rational numbers: There exists infinitely many rational numbers between two rational numbers.

A rational number between two rational numbers can be found by calculating the average of given numbers.

- Irrational numbers: A decimal expression which is neither terminating nor repeating represents an irrational number.
Numbers other than rational numbers $\sqrt{2}, \sqrt{3}, \sqrt{5} .0 .12345$ \qquad etc are examples of irrational numbers.
- Real Numbers: Rational and Irrational numbers together constitute the system of real.
- Irrational number between two rational numbers: If q_{1} and q_{2} are two rational numbers
then an irrational number between them is $\sqrt{q_{1} \times q_{2}}$, Where $q_{1} \times q_{2}$ is not a perfect square. If $q_{1} \times q_{2}$ is a perfect square, then take a number q between q_{1} and q_{2} such that $\mathrm{q}_{1} \times \mathrm{q}$ or $\mathrm{q} \times \mathrm{q}_{2}$ are not perfect squares
$\Rightarrow \quad \sqrt{q_{1} \times q}$ or $\sqrt{q \times q_{2}}$ is the required irrational number.
- Irrational number between a rational and irrational number or between two irrational numbers: Average of both numbers
- Rounding off numbers: To round off a number to a given number of decimal places, observe the next digit in the decimal part of the number and proceed as under, if the digit is 5 or more than 5 , we add 1 to the precedding digit.
If the digit is less than 5 , ignore it.

CHECK YOUR PROGRESS:

1. The rational number $\frac{-21}{49}$ in lowest terms is :
(A) $\frac{3}{7}$
(B) $\frac{-3}{7}$
(C) $\frac{-7}{3}$
(D) -3
2. $3 . \overline{4}$ can be written in the form $\frac{\mathrm{p}}{\mathrm{q}}$ as:
(A) $\frac{13}{4}$
(B) $\frac{4}{3}$
(C) $\frac{9}{31}$
(D) $\frac{31}{9}$
3. Number of rational numbers which lie between 2 and 7 is :
(A) 5
(B) 6
(C) 7
(D) Infinitely many
4. An irrational number lying between $\sqrt{3}$ and 3 is:
(A) $\sqrt{4}$
(B) $\sqrt{10}$
(C) $\sqrt{5}$
(D) $2 \sqrt{3}$
5. Which of the following is not a rational number?
(A) $\frac{\sqrt{3}}{2}$
(B) 3
(C) $\frac{5}{2}$
(D) $\frac{-3}{5}$
6. Find two rational numbers between 1.23 and 1.24.
7. Simplify: $(\sqrt{32} \times \sqrt{50}) \times \sqrt{72} \div 36 \sqrt{8}$.
8. Find three irrational numbers between 3 and 4 .
9. Represent the following rational numbers on number line
(A) $\frac{7}{2}$
(B) $\frac{-18}{5}$
10. Represent the following irrational numbers on number line
(A) $\sqrt{3}$
(B) $\sqrt{7}$

STRETCHYOURSELF:

1. By fnding the decimal representation of $\frac{22}{7}$,
2. A
3. $1.2325,1.235$
4. $\frac{10}{3}$
comment, is it rational or irrational? Find its apporoximate value up to three places of decimals.
5. $2 \sqrt{3}, \frac{3+2 \sqrt{3}}{2}, \sqrt{3}+2$

STRETCHYOURSELF:

2. Comment, 0 is a rational number or not. Justify your answer.
3. $\frac{22}{7}=3 . \overline{142857}$, so it is a rational number,

ANSWERS

CHECK YOUR PROGRESS:

1. B
2. D
3. D
4. C
approximate value is 3.143 .
5. Yes, Zero is a rational number because 0 0
can be written as any non zero integer
