17

SECANTS, TANGENTS AND THEIR PROPERTIES

- Secant : Aline which interesects circle at two distinct points. Here PAB is a secant.

Fig. (i)

- Tangent : A line which touches a circle at exactly one point and the point where it touches the circle is called point of contact. Here PTS is tangent and T is point of contact.

When two points of intersection of secant and circle coincide it becomes a tangent.

Fig. (ii)

- From an external point only two tangents can be drawn to a circle e. g. PT \& PT'.
- The lengths of two tangents from an external point are equal. Here $\mathrm{PT}=\mathrm{PT}^{\prime}$, [Fig. (ii)]
- A radius through the point of contact is perpendicular to the tangent at the point. Here $\angle \mathrm{PT}^{\prime} \mathrm{O}=\angle \mathrm{PTO}=90^{\circ}$. [Fig. (ii)]

The tangents drawn from an external point to a circle are equally inclined to the line joining the point to the centre of circle. Here $\angle \mathrm{TPO}$ $=\angle \mathrm{T}^{\prime} \mathrm{PO}$. [Fig. (ii)]

Fig. (iii)
If two chords AB and CD or AB and EF of a circle intersect at a point P or Q outside or inside the circle, then $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$ or $\mathrm{QA} \times \mathrm{QB}=\mathrm{QE} \times \mathrm{QF}$.
If PAB is a secant to a circle intersecting the circle at A and B and $P T$ is a tangent to the circle at T , then $\mathrm{PA} \times \mathrm{PB}=\mathrm{PT}^{2}$. [Fig. (i)]
The angles made by a chord in alternate segment through the point of contact of a tangent is equal to the angle between chord and tangent. Here $\angle \mathrm{QP} \mathrm{X}=\angle \mathrm{QSP}$ and $\angle \mathrm{PRQ}=\angle \mathrm{QPY}$. [Fig. (iv)]

Fig. (iv)

CHECK YOUR PROGRESS:

1. A circle touches all the four sides of a quadrilateral $A B C D$. Prove that $A B+C D=B C+D A$.
2. Prove that a parallelogram circumscribing a circle is a rhombus.
3. Two tangents TP and TQ are drawn to a circle with centre O from an external point T . Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.
4. Two tangent segments PA and PB are drawn to a circle with centre O such that $\angle \mathrm{APB}=120^{\circ}$.

Prove that $\mathrm{AP}=\frac{1}{2} \mathrm{OP}$.
5. In given figure O is centre of circle and $\angle \mathrm{PBQ}=40^{\circ}$, find

(i) $\angle \mathrm{QPY}$
(ii) $\angle \mathrm{POQ}$
(iii) $\angle \mathrm{OPQ}$
6. In figure if $\angle \mathrm{PAT}=40^{\circ}$ and $\angle \mathrm{ATB}=60^{\circ}$, Show tha $\mathrm{PM}=\mathrm{PT}$.

STRETCH YOURSELF

1. With the help of an activity Show that a tangent is a line perpendicular to the radius through the point of contact.
is joined to each of the vertices A, B, C and D , Prove that $\mathrm{OA}^{2}+\mathrm{OC}^{2}=\mathrm{OB}^{2}+\mathrm{OD}^{2}$.

ANSWERS

 CHECK YOUR PROGRESS :5. (i) 40°
(ii) 80°
(iii) 50°
