16

ANGLES IN A CIRCLE AND CYCLIC QUADRILATERAL

- Central Angle: Angle subtended by an arc at the centre of circle.

In figure it is $\angle \mathrm{AOB}$.

Fig. (i)
Length of an Arc =

$$
\text { circumference } \times \frac{\text { degree measure of the arc }}{360^{\circ}}
$$

- Inscribed Angle : The angle subtended by an arc or chord on any point on the remaining part of circle. In figure (i) it is $\angle \mathrm{APB}$.
The angle subtended at the centre of a circle by an arc is double the angle subtended by it on any point on the remaining part of the circle. In fig. (i) $\angle \mathrm{AOB}=2 \angle \mathrm{APB}$.
Angles in the same segment of a circle are equal . In fig. (i) $\angle \mathrm{APB}=\angle \mathrm{AQB}$.
- Angle in a semi circle is a right angle.

In Fig. (ii) $\angle \mathrm{PBQ}=90^{\circ}$

Fig. (ii)

- Concyclic Points: Points which lie on a circle

Three non collinear points are always concylcic and a uniuqe circle passes through them

- Cyclic Quadrilateral : A quadrilateral in which all four vertices lie on a circle. In fig. (iii) PQRS is a cyclic quadrilateral.

Fig. (iii)
If a pair of opposite angles of a quadrilateral is supplementary then the quadrilateral is cyclic i.e. $\angle \mathrm{P}+\angle \mathrm{R}=180^{\circ}$ or
$\angle \mathrm{Q}+\angle \mathrm{S}=180^{\circ} \Rightarrow \mathrm{PQRS}$ is cyclic.

- If PQRS is a cyclic parallelogram then it is a rectangle.

CHECK YOUR PROGRESS:

1. In given figure if $\angle \mathrm{ABC}=69^{\circ}$ and $\angle \mathrm{ACB}=31^{\circ}$ then $\angle \mathrm{BDC}$ is:

(A) 80°
(B) 69°
(C) 59°
(D) 31°
2. In figure given below A, B and C are three points on a circle with centre O such that $\angle \mathrm{BOC}$ $=30^{\circ}$ and $\angle \mathrm{AOB}=60^{\circ}$. If D is a point on the circle other than the $\operatorname{arc} \mathrm{ABC}$, then $\angle \mathrm{ADC}$ is:

(A) 30°
(B) 60°
(C) 45°
(D) 90°
3. A chord of a circle is equal to the radius of the circle. The angle subtended by the chord at a point on the minor arc is :
(A) 15°
(B) 150°
(c) 45°
(D) 60°
4. In figure given below $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four points on a circle. AC and BD intersect at a point E such that $\angle \mathrm{BEC}=130^{\circ}$ and $\angle \mathrm{ECD}=20^{\circ} . \angle \mathrm{BAC}$ is :

(A) 110°
(B) 60°
(C) 120°
(D) 90°
5. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E . If $\angle \mathrm{DBC}=70^{\circ}$, $\angle B A C=30^{\circ}$, find $\angle B C D$. Further if $A B=B C$, find $\angle E C D$.
(A) 30°
(B) 60°
(C) 50°
(D) 110°
6. In given figure $\angle \mathrm{PQR}=100^{\circ}$, where P, Q and R are the points on a circle with centre O . $\angle \mathrm{OPR}$ is :

(A) 70°
(B) 80°
(C) 10^{0}
(D) 20°
7. In given figure AB is a diameter of a circle with centre O . If $\angle \mathrm{ABC}=70^{\circ}, \angle \mathrm{CAD}=30^{\circ}$ and $\angle B A E=60^{\circ}$, find $\angle B A C, \angle A C D$ and $\angle A B E$.

8. In figure AB is the diameter of a circle with centre O . If $\angle \mathrm{PAB}=55^{\circ}, \angle \mathrm{PBQ}=25^{\circ}$ and $\angle \mathrm{ABR}=50^{\circ}$, then find $\angle \mathrm{PBA}, \angle \mathrm{BPQ}$ and $\angle \mathrm{BAR}$

STRETCHYOURSELF

ANSWERS

1. In figure given below P is the centre of a circle.

Prove that $\angle \mathrm{XPZ}=2(\angle \mathrm{XZY}+\angle \mathrm{YXZ})$.
CHECK YOUR PROGRESS :

1. A

2. C
3. B
4. A
5. C
6. Two circles intersect at A and B. AC and AD are diameters of the circles. Prove that
7. C
C, B and D are collinear.
8. $20^{\circ}, 40^{\circ}, 30^{\circ}$
9. $35^{\circ}, 30^{\circ}, 40^{\circ}$
