16

ANGLES IN A CIRCLE AND CYCLIC QUADRILATERAL

• **Central Angle:** Angle subtended by an arc at the centre of circle.

In figure it is $\angle AOB$.

Length of an Arc =

circumference $\times \frac{\text{degree measure of the arc}}{360^{\circ}}$

• **Inscribed Angle :** The angle subtended by an arc or chord on any point on the remaining part of circle . In figure (i) it is ∠ APB.

The angle subtended at the centre of a circle by an arc is double the angle subtended by it on any point on the remaining part of the circle. In fig. (i) $\angle AOB = 2 \angle APB$.

Angles in the same segment of a circle are equal. In fig. (i) $\angle APB = \angle AQB$.

• Angle in a semi circle is a right angle. In Fig. (ii) $\angle PBQ = 90^{\circ}$

Concyclic Points: Points which lie on a circle

Three non collinear points are always concylcic and a uniuqe circle passes through them

• **Cyclic Quadrilateral :** A quadrilateral in which all four vertices lie on a circle. In fig. (iii) PQRS is a cyclic quadrilateral.

Fig.(iii)

If a pair of opposite angles of a quadrilateral is supplementary then the quadrilateral is cyclic i.e. $\angle P + \angle R = 180^{\circ}$ or

 $\angle Q + \angle S = 180^{\circ} \Rightarrow$ PQRS is cyclic.

• If PQRS is a cyclic parallelogram then it is a rectangle.

48 :: Learner Guide

7. In given figure AB is a diameter of a circle with centre O. If $\angle ABC = 70^{\circ}$, $\angle CAD = 30^{\circ}$ and $\angle BAE = 60^{\circ}$, find $\angle BAC$, $\angle ACD$ and $\angle ABE$.

8. In figure AB is the diameter of a circle with centre O. If $\angle PAB = 55^\circ$, $\angle PBQ = 25^\circ$ and $\angle ABR = 50^\circ$, then find $\angle PBA$, $\angle BPQ$ and $\angle BAR$

