QUADRILATERALS

- Quadrilateral:- A plane, closed, geometric figure with four sides.

- Elements of a Quadrilateral.

Four sides- AB, BC, CD and DA
Four angles- $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}, \angle \mathrm{D}$
Two diagonals- AC and BD
Four vertices- A, B, C and D

- Types of Quadrilaterals
- Trapezium: When one pair of oppsite sides of quadrilateral is parallel, then it is called a trapezium.

In figure. $\mathrm{AB}|\mid \mathrm{DC}, \mathrm{AB}$ and DC are called bases of the trapezium.
If non-parallel sides of a trapezium are equal, then it is called an isosceles trapezium.

- Kite: When two pairs of adjacent sides of a quadrilateral are equal, then it is called a kite.

- Parallelogram: When both the pairs of opposite sides of a quadrilateral are parallel, then it is called a parallelogram.

$A B \| D C$ and $A D \| B C$
- Rectangle : It is a special type of parallelogram when one of its angles is right angle.

- Square: When all the four sides of a parallelogram are equal and one of its angles is 90°, then it is called a square.

In $\square \mathrm{ABCD}$
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $\angle \mathrm{A}=90^{\circ}$.

- Rhombus : When all four sides of a parallelogram are equal, then it is called a rhombus.

- Types of quadrilaterls

Properties of different types of quadrilaterals:

1. Parallelogram	The opposite sides are equal. The opposite angles are equal. The diagonals bisect each other and each of them divides the parallelogram into two triangles of equal area.
2. Rhombus	All sides are equal. Opposite angles are equal
Diagonals of a rhombus	
are unequal and bisect	
each other at right angles.	

Mid-Point Theorem:

- In a triangle the line-segment joining the mid points of any two sides is parallel to the third side and is half of it.

In $\triangle A B C$ if D and E are the mid-points of AB and AC respectively then $\mathrm{DE} \| \mathrm{BC}$ and $D E=\frac{1}{2} B C$.

- The line drawn through the mid point of one side of a triangle parallel to the another side, bisects the thrid side.
- If there are three or more parallel lines and the intercepts made by them on a transversal are equal, the corresponding intercepts made on any other transversal are also equal e.g. if $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}$ then $\mathrm{LM}=\mathrm{MN}=\mathrm{NO}$.

- Parallelograms on the same base (or equal bases) and between the same parallels are equal in the area. If $1 \| \mathrm{m}$ then

area of $\|$ gram $\mathrm{ABCD}=$ area of $\|$ gram PBCQ
- Triangles on the same base (or equal bases) and between the same parallels are equal in area.
- Triangles on equal bases having equal areas have their corresponding altitudes equal.

CHECK YOUR PROGRESS:

1. In parallelogram, $A B C D$ find the value of x and y -

A. $29^{0}, 73^{0}$
B. $23^{0}, 78^{0}$
C. $23^{0}, 23^{0}$
D. $29^{\circ}, 78^{\circ}$
2. Three angles of a quadrilateral measure $54^{\circ}, 110^{\circ}$ and 86°. The measure of the fourth angle is:
A. 86^{0}
B. 54°
C. 110^{0}
D. 250°
3.. In figure, ABCD is a square. If $\angle \mathrm{DPC}=80^{\circ}$, then value of x is

A. 125°
B. 130°
C. 120°
D. 115°
3. In figure ABCD is a rhombus. If $\angle \mathrm{ABC}$ is 124°, then the value of x is

A. 26°
B. 28°
C. 25°
D. 27°
4. In figure ABCD is a rhombus whose diagonals intersect at O . If $\angle \mathrm{OAB}=40^{\circ}$ and $\angle \mathrm{ABO}=x^{\circ}$, then $\mathrm{x}=$?

A. 50°
B. 35°
C. 40°
D. 45^{0}
5. The length of the diagonals of a rhombus are 24 cm and 18 cm respectively. Find the length of each side of the rhombus.
6. Prove that the sum of all the four angles of a quadrilateral is 360°.
7. The angles of a quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.
8. The sides BA and DC of $\square \mathrm{ABCD}$ are produded in figure. Prove that $\mathrm{x}+\mathrm{y}=\mathrm{a}+\mathrm{b}$.

9. Show that the diagonals of a square are equal and bisect each other at right angles.

STRETCH YOURSELF

1. In figure ABCD is a parallelogram in which $\angle \mathrm{DAB}=70^{\circ}, \angle \mathrm{DBC}=80^{\circ}$. Find x and y

2. ABCD and PQRC are rectangles where Q is the mid point of AC. Prove that (i) $\mathrm{DP}=$ PC

(ii) $\mathrm{PR}=\frac{1}{2} \mathrm{AC}$
3. If D, E and F are the mid-points of the sides $B C, C A$ and $A B$ respectively of an equilateral triangle $A B C$. Prove that $\triangle D E F$ is also an equilateral triangle.
4. ABC is a triangle right angled at C . A line through the mid point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
(i) D is the mid point of AC .
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(ii) $\mathrm{CM}=\mathrm{AM}=\frac{1}{2} \mathrm{AB}$
5. Prove that the line segment joining the mid points of any two sides of a triangle is parallel to the third side and equal to half of it.

ANSWER

CHECK YOUR PROGRESS :

1. A
2. C
3. A
4. B
5. A
6. 15 cm
7. $36^{0}, 60^{\circ}, 108^{0}, 156^{0}$

STRETCH YOURSELF:

1. $\mathrm{x}=30^{\circ}, \mathrm{y}=80^{\circ}$
