

211en18

18

CONSTRUCTIONS

One of the aims of studying Geometry is to acquire the skill of drawing figures accurately. You have learnt how to construct geometrical figures namely triangles, squares and circles with the help of ruler and compasses. You have constructed angles of $30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}$ and 45°. You have also drawn perpendicular bisector of a line segment and bisector of an angle.

In this lesson we will extend our learning to construct some other important geometrical figures.

OBJECTIVES

After studying this lesson, you will be able to

- divide a given line segment internally in a given ratio;
- construct a triangle from the given data;
(i) SSS
(ii) SAS
(iii) ASA
(iv) RHS
(v) perimeter and base angles
(vi) base, sum/difference of the other two sides and one base angle.
(vii) two sides and a median corresponding to one of these sides.
- construct a triangle, similar to a given triangle; and;
- Construct tangents to a circle from a point:
(i) on it using the centre of the circle.
(i) outside it.

EXPECTED BACKGROUND KNOWLEDGE

We assume that the learner already knows how to use a pair of compasses and ruler to construct

- angles of $30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 105^{\circ}, 120^{\circ}$
- the right bisector of a line segment
- bisector of a given angle.

18.1 DIVISION OF A LINE SEGMENT IN THE GIVEN RATIO INTERNALLY

Construction 1: To divide a line segment internally in a given ratio.
Given a line segment AB . You are required to divide it internally in the ratio $2: 3$. We go through the following steps.
Step 1: Draw a ray AC making an acute angle with AB .
Step 2: Starting with A , mark off 5 points $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ and C_{5} on AC at equal distances from the point A .

Step 3: Join C_{5} and B.
Step 4: Through C_{2} (i.e. the second point), draw $\mathrm{C}_{2} \mathrm{D}$ parallel to $\mathrm{C}_{5} \mathrm{~B}$ meeting AB in D .

Fig. 18.1
Then D is the required point which divides AB internally in the ratio $2: 3$ as shown in Fig. 18.1.

CHECK YOUR PROGRESS 18.1

1. Draw a line segment 7 cm long. Divide it internally in the ratio $3: 4$. Measure each part. Also write the steps of construction.
2. Draw a line segment $P Q=8 \mathrm{~cm}$. Find point R on it such that $P R=\frac{3}{4} P Q$.
[Hint: Divide the line segment PQ internally in the ratio 3 : 1]

18.2 CONSTRUCTION OF TRIANGLES

Construction 2: To construct a triangle when three sides are given (SSS)
Suppose you are required to construct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{AC}=4.8 \mathrm{~cm}$ and $\mathrm{BC}=5 \mathrm{~cm}$.

We go through the following steps:
Step 1: Draw $A B=6 \mathrm{~cm}$.
Step 2: With A as centre and radius 4.8 cm , draw an arc.

Step 3: With B as centre and radius 5 cm draw another arc intersecting the arc of Step 2 at C .

Fig. 18.2

Step 4: Join AC and BC.
Then $\triangle \mathrm{ABC}$ is the required triangle.
[Note: You may take BC or AC as a base]
Construction 3: To construct a triangle, when two sides and the included angle is given (SAS).

Suppose you are required to construct a triangle PQR in which $\mathrm{PQ}=5.6 \mathrm{~cm}$, $\mathrm{QR}=4.5 \mathrm{~cm}$ and $\angle \mathrm{PQR}=60^{\circ}$.

Step 1: Draw $\mathrm{PQ}=5.6 \mathrm{~cm}$
Step 2: At Q , construct an angle $\angle \mathrm{PQX}=60^{\circ}$
Step 3: With Q as centre and radius 4.5 cm draw an arc cutting $Q X$ at R.
Step 4: Join PR
Then $\triangle \mathrm{PQR}$ is the required triangle.

Fig. 18.3
[Note: You may take $\mathrm{QR}=4.5 \mathrm{~cm}$ as the base instead of PQ]
Construction 4: To construct a triangle when two angles and the included side are given (ASA).
Let us construct a $\triangle \mathrm{ABC}$ in which $\angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=45^{\circ}$ and $\mathrm{BC}=4.7 \mathrm{~cm}$.

To construct the triangle we go through the following steps:
Step 1: Draw BC=4.7 cm.
Step 2: At B, construct $\angle \mathrm{CBQ}=60^{\circ}$
Step 3: At C , construct $\angle \mathrm{BCR}=45^{\circ}$ meeting BQ at A . Then $\triangle \mathrm{ABC}$ is the required triangle.

Note: To construct a triangle when two angles and any side (other than the included side) are given, we find the third angle (using angle sum property of the triangle) and then use the above method for

Fig. 18.4 constructing the triangle.

Construction 5: To construct a right triangle, when its hypotenuse and a side are given.
Let us construct a right triangle ABC , right angled at B , side $\mathrm{BC}=3 \mathrm{~cm}$ and hypotenuse $\mathrm{AC}=5 \mathrm{~cm}$

To construct the triangle, we go through the following steps:
Step 1: Draw $\mathrm{BC}=3 \mathrm{~cm}$
Step 2: At B, construct $\angle \mathrm{CBP}=90^{\circ}$
Step 3: With C as centre and radius 5 cm draw an arc cutting BP in A .

Step 4: Join AC
$\triangle \mathrm{ABC}$ is the required triangle.
Construction 6: To construct a triangle when its

Fig. 18.5 perimeter and two base angles are given.

Suppose we have to construct a triangle whose perimeter is 9.5 cm and base angles are 60° and 45°

To construct the triangle, we go through the following steps:
Step 1: Draw XY $=9.5 \mathrm{~cm}$
Step 2: At X , construct $\angle \mathrm{YXP}=30^{\circ}$ [which is $1 / 2 \times 60^{\circ}$]
Step 3: At Y , construct $\angle \mathrm{XYQ}=22^{1 ⁄ 2} 2^{\circ}$ [which is $1 / 2 \times 45^{\circ}$]
Let XP and YQ intersect A.
Step 4: Draw right bisector of XA intersecting XY at B.
Step 5: Draw right bisector of YA intersecting XY at C.
Step 6: Join AB and AC.

Fig. 18.6
$\Delta \mathrm{ABC}$ is the required triangle.
Construction 7: To construct a triangle when sum of two sides, third side and one of the angles on the third side are given.
Suppose you are required to construct a triangle ABC in which
$\mathrm{AB}+\mathrm{AC}=8.2 \mathrm{~cm}, \mathrm{BC}=3.6 \mathrm{~cm}$ and $\angle \mathrm{B}=45^{\circ}$
To construct the triangle, we go through the following steps:
Step 1: Draw BC=3.6 cm
Step 2: At B, construct $\angle \mathrm{CBK}=45^{\circ}$

Fig. 18.7
Step 3: From BK, cut off BP $=8.2 \mathrm{~cm}$.
Step 4: Join CP.
Step 5: Draw right bisector of CP intersecting BP at A .
Step 6: Join AC
$\triangle \mathrm{ABC}$ is required triangle.

Construction 8: To construct a triangle when difference of two sides, the third side and one of the angles on the third side are given.

Suppose we have to construct a $\triangle \mathrm{ABC}$, in which $\mathrm{BC}=4 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}, \mathrm{AB}-\mathrm{AC}$ $=1.2 \mathrm{~cm}$.

To construct the triangle we go through the following steps:
Step 1: Draw $B C=4 \mathrm{~cm}$.
Step 2: Construct $\angle \mathrm{CBP}=60^{\circ}$
Step 3: From BP cut off $B K=1.2 \mathrm{~cm}$.
Step 4: Join CK.
Step 5: Draw right bisector of CK meeting BP produced at A.
Step 6: Join AC
$\Delta \mathrm{ABC}$ is the required triangle.

Fig. 18.8

Construction 9: To construct a triangle when its two sides and a median corresponding to one of these sides, are given:
Suppose you have to construct a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and median $\mathrm{CD}=3.5 \mathrm{~cm}$.

We go through the following steps:
Step 1: Draw $A B=6 \mathrm{~cm}$
Step 2: Draw right bisector of $A B$ meeting $A B$ in D.
Step 3: With D as centre and radius 3.5 cm draw an arc.

Step 4: With B as centre and radius 4 cm draw another arc intersecting the arc of Step 3 in

Fig. 18.9 C.

Step 5: Join AC and BC.
Then $\triangle \mathrm{ABC}$ is required triangle.

CHECK YOUR PROGRESS 18.2

1. Construct a $\triangle \mathrm{DEF}$, given that $\mathrm{DE}=5.1 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and $\mathrm{DF}=5.6 \mathrm{~cm}$. Write the steps of construction.

Note: You are also required to write the steps of construction in each of the remaining problems.
2. Construct a $\triangle P Q R$, given that $P R=6.5 \mathrm{~cm}, \angle \mathrm{P}=120^{\circ}$ and $\mathrm{PQ}=5.2 \mathrm{~cm}$.
3. Construct a $\triangle \mathrm{ABC}$ given that $\mathrm{BC}=5.5 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$.
4. Construct a right triangle in which one side is 3 cm and hypotenuse is 7.5 cm .
5. Construct a right angled isoceles triangle in which one of equal sides is 4.8 cm .
6. Construct a $\triangle \mathrm{ABC}$ given that $\mathrm{AB}+\mathrm{BC}+\mathrm{AC}=10 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}, \angle \mathrm{C}=30^{\circ}$.
7. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}, \mathrm{BC}+\mathrm{AC}=9.8 \mathrm{~cm}$.
8. Construct a $\triangle \mathrm{LMN}$, when $\angle \mathrm{M}=30^{\circ}, \mathrm{MN}=5 \mathrm{~cm}$ and $\mathrm{LM}-\mathrm{LN}=1.5 \mathrm{~cm}$.
9. Construct a triangle $P Q R$ in which $P Q=5 \mathrm{~cm}, Q R=4.2 \mathrm{~cm}$ and median $\mathrm{RS}=3.8 \mathrm{~cm}$.

18.3 TO CONSTRUCT A TRIANGLE SIMILAR TO A GIVEN TRIANGLE, AS PER GIVEN SCALE FACTOR

[Here, Scale Factor means the ratio of the sides of the triangle to be constructed, to the corresponding sides of the given triangle.]

Construction 10: Construct a triangle similar to a given triangle ABC with its sides equal to $3 / 5$ of the corresponding sides of the triangle ABC .

Steps of Construction:

1. Let ABC be the given Δ. Draw any ray BX making an acute angle with BC on the side opposite to vertex A.
2. Locate 5 points $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$ and B_{5} on BX so that

$$
\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}
$$

3. Join $\mathrm{B}_{5} \mathrm{C}$ and draw a line through B_{3} parallel to $\mathrm{B}_{5} \mathrm{C}$ to meet BC at C^{\prime}.
4. Draw a line though C^{\prime} parallel to CA to meet AB in A^{\prime}.

Fig. 18.10

Then $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required Triangle.
Construction 11: Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm . Construct another triangle similar to this triangle with scale factor $\frac{2}{3}$.

Steps of Construction:

1. Draw of a line segment $\mathrm{BC}=7 \mathrm{~cm}$
2. Through B draw an arc of radius 6 cm . Through C draw another arc of radius 5 cm to intersect the first arc at A.
3. Join $A B$ and $A C$ to get $\triangle A B C$.
4. Draw a ray BX making an acute angle with BC.
5. Locate 3 points B_{1}, B_{2} and B_{3} on $B X$ such that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}$
6. Join $\mathrm{B}_{3} \mathrm{C}$ and through B_{2} draw a line parallel

Fig. 18.11 to $\mathrm{B}_{3} \mathrm{C}$ to meet BC in C^{\prime}.
7. Through C^{\prime}, draw a line parallel to CA to meet AB at A^{\prime}.

Then $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

CHECK YOUR PROGRESS 18.3

1. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 7 cm and then a triangle similar to it whose sides are $\frac{3}{4}$ of the corresponding sides of the first triangle.
2. Draw a triangle ABC with $\mathrm{BC}=7 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$. Then construct a triangle whose sides are $\frac{4}{5}$ of the corresponding sides of the triangle ABC.
3. Draw a right triangle with sides (other than hypotenuse) of lenghts 5 cm and 6 cm . Then construct another triangle similar to this triangle with scale factor $\frac{4}{5}$.
4. Draw a $\triangle \mathrm{ABC}$ with base $\mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{ABC}=60^{\circ}$ and side $\mathrm{AB}=4.5 \mathrm{~cm}$. Construct a triangle $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ similar to ABC with scale factor $\frac{5}{6}$.

18.4 CONSTRUCTION OF TANGENTS TO A CIRCLE

Construction 12: To draw a tangent to a given circle at a given point on it using the centre of the circle.

Suppose C be the given circle with centre O and a point P on it. You to draw a tangent to the circle. We go through the following steps:

Step 1: Join OP.
Step 2: At P , draw $\mathrm{PT} \perp \mathrm{OP}$.
Step 3: Produce TP to Q
Then TPQ is the required tangent.

Fig. 18.12

Construction 13: To draw tangents to a circle from a given point outside it.
Suppose C be the given circle with centre O and a point A outside it. You have to draw tangents to the circle from the point A. For that, we go through the following steps:

Step 1: Join OA.
Step 2: Draw the right bisector of OA. Let R be mid point of OA.

Step 3: With R as centre and radius equal to RO , draw a circle intersecting the given circle at P and Q .

Step 4: Join AP and AQ.
Then AP and AQ are the two required tangents.

Fig. 18.13

(p) CHECK YOUR PROGRESS 18.4

1. Draw a circle of 3 cm radius. Take a point A on the circle. At A , draw a tangent to the circle by using the centre of the circle. Also write steps of construction.
2. Draw a circle of radius 2.5 cm . From a point P outside the circle, draw two tangents $P Q$ and $P R$ to the circle. Verify that lengths of $P Q$ and $P R$ are equal. Also write steps of construction.

TERMINAL EXERCISE

1. Draw a line segment $\mathrm{PQ}=8 \mathrm{~cm}$ long. Divide it internally in the ratio $3: 5$. Also write the steps of construction.

Note: You are also required to write the steps of construction in each of the following problems.
2. Draw a line segment $\mathrm{AB}=6 \mathrm{~cm}$. Find a point C on AB such that $\mathrm{AC}: \mathrm{CB}=3: 2$. Measure AC and CB
3. Construct a triangle with perimeter 14 cm and base angles 60° and 90°.
4. Construct a right angled triangle whose hypotenuse is 8 cm and one of its other two sides is 5.5 cm .
5. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=3.5 \mathrm{~cm}, \mathrm{AB}+\mathrm{AC}=8 \mathrm{~cm}$ and $\angle \mathrm{B}=60^{\circ}$.
6. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=4 \mathrm{~cm}, \angle \mathrm{~A}=45^{\circ}$, and $\mathrm{AC}-\mathrm{BC}=1 \mathrm{~cm}$.
7. Construct a $\triangle \mathrm{PQR}$ with $\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{PR}=5.5 \mathrm{~cm}$ and the base $\mathrm{QR}=6.5 \mathrm{~cm}$. Construct another triangle $\mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ similar to $\triangle \mathrm{PQR}$ such that each of its sides are $\frac{5}{7}$ times the corresponding sides of $\triangle \mathrm{PQR}$.
8. Construct a right triangle with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Construct another triangle similar to it with scale factor $5 / 6$.
9. Draw a circle of diameter 6 cm . From a point P outside the circle at a distance of 6 cm from the centre, draw two tangents to the circle.
10. Draw a line segment AB of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.

