SAMPLE QUESTION PAPER MATHEMATICS (211)

Time: 2¹/₂ hrs

Note:

Maximum Marks: 85

- i. This question paper consists of 44 questions in all.
- ii. All questions are compulsory.
- iii. Marks are given against each question.
- iv. Section A consists of
 - a. **Q.No. 1 to 17** Multiple Choice type questions (MCQs) carrying 1 mark each. Select and write the most appropriate option out of the four options given in each of these questions. An internal choice has been provided in some of these questions. You have to attempt only **one** of the given choices in such questions.
 - b. Q.No. 18 to 28 Objective type questions. Q.No. 18 to 27 carry 02 marks each (with 2 sub-parts of 1 mark each) and Q.No. 28 carries 05 marks (with 5 sub-parts of 1 mark each). Attempt these questions as per the instructions given for each of the questions 18 28.

v. Section B consists of

- a. **Q.No. 29 to 37** Very Short questions carrying 02 marks each.
- b. Q.No. 38 to 42 Short Answer type questions carrying 03 marks each.
- c. Q.No. 43 to 44 Long Answer type questions carrying 05 marks each.

SECTION A			
S.NO.	Questions	Marks	
	Q.No. 1 to 17 are MCQs (1 mark each):		
	An internal choice has been provided in some of these questions. You have to		
	attempt only one of the given choices in such questions.		
1.	(i) If $a + b = 12$ and $ab = 22$ then $a^2 + b^2 = ?$	1	
	(a) 188		
	(b) 144		
	(c) 34		
	(d) 100		
	OR		
	(ii) Which of the following is the factored form of the expression $5x^2$ - 13x-6		
	(a) $(x-3)(5x+2)$		
	(b) $(x+3)(5x+2)$		
	(c) $(x-3)(x+2)$		
	(d) $(x+3)(x+2)$		
2.	(i) Which of the following is not a solution of the equation: $3x + 6y = 12$.	1	
	(a) (-4, 4)		
	(b) $(0,2)$		
	(c) (8, -2)		
	(d)(3,1)		
	OR		
	(ii) The pairs of equations $x+2y-5 = 0$ and $-4x-8y+20=0$ have:		
	(a) Unique solution		
	(b) Exactly two solutions		
	(c) Infinitely many solutions		
	(d) No solution		

3.	(i) simple interest on ₹ 1632 for 5 years at per annum: $6\frac{1}{6}$	1
	(a) ₹ 649 4	
	(b) ₹ 510	
	(c) ₹ 580	
	(d) ₹ 630	
	OR	
	(ii) What sum of money lent for two years at compound interest will amount to ₹	
	968at the rate of 10% per annum, interest compounded annually?	
	(a) < 843 (b) ₹ 827	
	(c) ₹ 889	
	(d) ₹ 800	
4.	(i) If P is 40% less than Q, then Q is what % more than P?	1
	(a) 40 %	
	(b) 66.66%	
	(c) 60 %	
	(d) 33.3%	
	UK (ii) The price of cooking oil has increased by 25% By what present should a	
	(ii) The price of cooking on has increased by 25%. By what present should a family reduce the consumption of cooking oil so as not to increase the expenditure	
	in this account?	
	(a) 20%	
	(b) 25%	
	(c) 18%	
	(d) 16%	
5.		1
	AX	
	c	
	(i) What is the measure of the angle x, when angle measure of arcs AB and AC are 84° and 140° respectively?	
	(a) 134°	
	(b) 135°	
	(c) 136°	
	(d) 13/°	
	UK	1

	L 120 50 B	
	(ii) What is the value of angle x? (a) 50^{0} (b) 120^{0} (c) 60^{0} (d) 70^{0}	
6.	What is the length of AC? (a) 19 (b) 18 (c) 17	1
7.	 (d) 16 (i) The degree measure of the angle subtended by the diameter of a semi-circle at its centre is: (a) 90 (b) 45 (c) 180 (d) 60 	1
	OR (ii) The radius of a circle drawn from the point of contact of a tangent to the circle is always to the tangent. (a) equal (b) perpendicular (c) twice (d) parallel	

	(d) 154 cm^2	
	OR	
	(ii) Area of a rhombus is 156 cm ² and one of its diagonal is 13 cm. Its other	
	diagonal is:	
	(a) 12cm	
	(b) 24 cm	
	(c) 2 cm	
	(d) 48 cm	
12.	If sin A + sin ² A be equal to 1, then what is the value of $\cos^2 A + \cos^4 A$?	1
	(a) 1	
	(b) 1/2	
	$(0)^{72}$	
13.	(1) Value of $(\sin A + \cos A)^2 - 2 \sin A \cos A$ is equal to	1
	(a) 0 (b) 1 (c) 2 (d) $\sin^2 A - \cos^2 A$	
	OR	
	(ii) If $\cos X = \frac{2}{3}$ then tan X is equal to:	
	(a) 5/2	
	(b) $\sqrt{(5/2)}$	
	(c) $\sqrt{5/2}$	
	(d) $2/\sqrt{5}$	
14.	In \triangle ABC, right-angled at B, AB = 24 cm, BC = 7 cm. The value of tan C is:	1
	(a) 12/7	
	(b) 24/7	
	(c) 20/7	
	(d) 7/24	
15.	A card is drawn from a well shuffled deck of 52 playing cards. Find the probability that it	1
	is of red colour	
	(a) 0.1	
	(c) 0.5	
	$(\mathbf{d}) 1.0$	
16.	If $P(E) + P(E) = y$, value of $y^3 - 4$ is	
	$\begin{pmatrix} a \\ b \end{pmatrix} 3$	
	(c) = 3	
	$(\mathbf{d}) 0$	
17.	Two different coins are tossed at the same time. How many outcomes are possible?	1
	(a) 2	
	(b) 4	
	(\mathbf{d})	

	<u>Q.No. 18 to 27</u> are Objective Questions (2 marks each):				
	Some of these questions have 4 sub-parts. You have to do any 2 sub-parts out of 4 sub-				
	parts in such questions.				
18.	Fill in the blanks: (Attempt any two parts	s from following questions (i) to (iv))	1 x 2		
(1)	Two factors (x+3) and are obtaine	ed on factorising $x^2 + 8x + 15$.			
(11)	The value of the polynomial $2x + 3x^2 - 4$	at $x = 0$ is			
(111)	If $p(x) = 0$ is a quadratic equation, then $p(x) = 0$	x) is a polynomial of degree			
(1V)	The common difference of the A.P. 3, 1, –	-1, -3 18			
19.	Match column – I statement with the rig	ght option of column - II	1x2		
	Column –I	Column - II			
	(i) roots of $4x^2 + 4\sqrt{3}x + 3 = 0$ are P. real and distinct				
	(ii) roots of $2x^2 + 5x + 5 = 0$ are	Q. not real			
20	Watta TDUE for a compatible for a second statement and	R. real and equal	1 1 2		
20.	Write I RUE for correct statement and	FALSE for incorrect statements: 0 = 0 and $2y$, $0y + 10 = 0$ represents two	1 X Z		
(1)	Graphically, the pair of equations $\delta x - 3y + 1$ lines which are intersecting at exactly one poi	0 = 0 and $2x - 9y + 10 = 0$ represents two nt			
(ii)	One of the factors of $(25x^2 - 1) + (1 + 5x)^2$ is	(5x+1).			
21.	Write the factorised form of following algebra	aic expression. (Attempt any two parts	1 x 2		
	from following questions(i) to (iv))				
	(i) $x^2 + 2xy + y^2 = \dots$				
	(ii) $x^2 - 2xy + y^2 = \dots$				
	$(iii) x_3^3 - y_3^3 - 3x^2y + 3xy^2 = \dots$				
	$(iv) x^3 - y^3 = \dots$				
22.	Read the passage and answer the questions that follow it. (i to ii)				
	Seema has in her kitchen 10 spoons, 4 serving spoons, 19 quarter plates, 22				
	1011 plates, 11 forks, 2 lighters and 36 boxes. Some of these boxes contain				
	spices, / of the boxes contain pulses and 6 boxes contain rice. Two boxes				
	have ghee and three boxes have oil in them. In this way full variety of things				
	are there in Seema's Kitchen.				
(i)	What percentage of boxes of rice are there in the kitchen?				
	(a) 7				
	(b) 50/3				
	(c) 100/3				
	(d) 100/7				
(ii)	What percentage of boxes of spices are	e there in the kitchen?			
	(a) 7				
	(b) 14				
	(c) 50				
	(d) 100/3				
23.	Fill in the blanks: (Attempt any two parts from following questions (i) to (iv))				
(i)	Angle in the same segment of a circle are				
(ii)	If the sum of a pair of opposite angles	of a quadrilateral is 180°, the			
	quadrilateral is				
(iii)	Only tangents can be drawn t	o a circle from an external point.			
(iv)	If angle between two tangents drawn fi	rom a point P to a circle of radius a			
	and centre O is 90° , then OP =	_			

24.	Write TRUE for correct statement and FALSE for incorrect statements:	1 x 2
(i)	To draw a pair of tangents to a circle which are inclined to each other at an	
	angle of 30°, it is required to draw tangents at the end points of those two	
	radii of the circle, the angle between which is 140°.	
(ii)	Using ruler and compass it is possible to construct an angle of 25°.	
25.	Fill in the blanks: (Attempt any two parts from following questions (i) to (iv))	1 x 2
(i)	Ratio of area of a circle of radius 'r' to its circumference is	
(ii)	Ratio of area of a square of side 'a' to its perimeter is	
(iii)	A sphere of radius 3 cm is inscribed in a cylinder. The height of the cylinder =	
(iv)	A room is in the shape of cube of side 'a'. The area of four walls of the room which needs to be painted is	
26.	Read the passage and answer the questions that follow it. (i to iv)	1 x 2
	Two towers of equal heights are standing opposite each other on either side of the road which is 100 m wide. From a point between them on the road the	
	angles of elevation of the top of towers are 30° and 60° , respectively.	
	Attempt any two parts from following questions(i to iv):	
(i)	Distance of the point from the tower whose top has the angle of elevation of 30° is:	
	(a) 20 m	
	(b) 25 m	
	(c) 50 m (d) 75 m	
(ii)	(d) 75 III Distance of the point from the tower whose top has the angle of elevation of 60° is:	
	(a) 20 m	
	(b) 25 m	
	(c) 50 m	
	(d) 75 m	
(iii)	The height of the tower is:	
	(a) $20\sqrt{3}$ m	
	(b) $25\sqrt{3}$ m	
	(c) $50/\sqrt{3}$ m	
	(d) $75/\sqrt{3}$ m	
(iv)	What will be the height of the tower if point is exactly at the midpoint of the line	
	segment joining the foot of the towers and from the point, the angle of elevation	
	for the top of both the towers is 45°?	
	(a) 20 m	
	(b) 25 m	
	(c) 50 m	
07	(d) 75 m	
27.	Read the passage and answer the questions that follow it. (i to iv)	1 x 2
	Probability is that branch of mathematics which deals with the measure of uncertainty in various phenomenons that gives several results/outcomes instead of a particular one	
	Sample space is the collection of all possible outcomes of a random experiment	

	whereas event is some specific or a set of specific outcomes.					
	Let us consider a random experiment is in which two dice are thrown					
	simultaneously and the sum of the numbers appearing on them is noted.					
	Attempt any two parts from following questions(i to iv):					
(i)	The number of all possible outcomes in the sample space corresponding to this					
	experiment are					
(ii)	The number of outcomes related to the event (E) that sum of the numbers					
	appearing on the two dice is 7 are					
(iii)	The value of P(E) is					
(iv)	The value of $P(\overline{E})$ is					
28.	Read the passage and answer the questions that follow it. (i to vii)	1 x 5				
	As a part of a campaign a huge balloon with message of awareness on "Say no to Drugs" was displayed from the terrace of a tall building. It was held by strings of length 12 m each and inclined at an angle of 60° at the point where it was tied as shown in figure. A sparrow bird sits at a point S on the balloon.					
	A Say No Drugs B 60°					
	P					
	Attempt any five parts from following questions(i to vii):					
(i)	ΔABP is					
	(a) Equilateral triangle					
	(b) Isosceles triangle					
	(c) Scalene triangle (d) can be Isosceles or scalene triangle					
(ii)	What is the length of AB?					
	(a) 9 m					
	(b) 12 m					
	(c) 8 m					
<i>(</i>)	(d) 18 m					
(111)	Find measure of reflex $\angle AOB$					
	(a) 60 (b) 120°					
	(0) 120 (c) 80°					
	(d) 240°					
(iv)	What is the measure of $\angle ASB$					
	(a) 60°					
	(b) 120°					
	$(c) 80^{\circ}$					
	(a) 240					

(v)	Find the radius of balloon	
	(a) $3\sqrt{3}$ m	
	(b) $4\sqrt{3}$ m	
	(c) $6\sqrt{3}$ m	
	(d) $8\sqrt{3}$ m	
(vi)	Find the distance between O and P	
	(a) $3\sqrt{3}$ m	
	(b) $4\sqrt{3}$ m	
	(c) $6\sqrt{3}$ m	
	(d) $8\sqrt{3}$ m	
(vii)	What is the measure of $\angle OAB$	
	(a) 15°	
	(b) 30°	
	(c) 45°	
	(d) 60°	

SECTION B

Q.	Questions	Marks
No.		
20	Construct a tangant to a giral at any point on it when radius of the giral is 2 am	2
29.	Construct a tangent to a circle at any point on it when radius of the circle is seni. The surface surge of a surface is 204 surg^2 . Fig. 1 its surfaces	2
30.	The surface area of a cube is 294 cm Find its volume.	2
	Or	
	From a circular disc of diameter 8 cm, a square of side 1.5 cm is removed. Find	
	the area of the remaining portion of the disc. (Use $\pi = 3.14$)	
31.	Find the value of k so that the quadratic equation $2x^2 + kx + 3 = 0$ has equal roots.	2
32.	Find the sum of all natural numbers upto 125 which are divisible by 5.	2
	OR	
	How many terms of the AP 25,28,31,34, are needed to give the sum 1070?	
33.	A refrigerator is sold for Rs 22000 cash or Rs. 10000 cash down payment and Rs	2
	12600 after six months. Find the rate of simple interest charged under the	
	instalment plan.	
34.	A second hand car is sold for Rs 50000 cash down payment along with two equal	2
	monthly instalment of Rs 102010 each. If the dealer charges interest at the rate of	
	12% p.a. compounded monthly under the instalment plan, find the cash price of	
	the car	
35	If point C $(-2, -1)$ divides the line segment joining points A $(1, 5)$ and B in the ratio	2
55.	3. 4 then find the coordinates of B	2
	OP	
	$\bigcup \mathbf{K}$	
	Find the centroid of the triangle whose vertices are $(5,-1)$, $(-3,-2)$ and $(-1,8)$.	

36	. A circus artist climbs a 16 m long rope whose one end is tied to the ground and	2				
	the other end to the top of a vertical pole. If the angle of elevation made by the					
	rope with the ground level is 30°, then find the height of the pole.					
	OR					
	A balloon is connected to a meterological ground station by a cable of length 100					
	m inclined at 60° to the horizontal. Find the height of the balloon from the ground					
	assuming that there is no slack in the cable.					
37	. By what number the median will increase if 25 is removed from the data 20, 24,	2				
	25, 28, 30, 31, 33, 38?					
38	. If the 7^{th} term of an AP is 27 and the 11^{th} term is 43, then find its 20th term.	3				
39	. Sum of two natural numbers is 12 and sum of their squares is 74. Find the greater	3				
	number.					
	Or					
	The product of digits of a two digit number is 12. When 9 is added to the number,					
	the digits interchange their places. Determine the number.					
40	. In a \triangle ABC with vertices A (6,4), B (5,-2) and C (7,-2), find the length of median	3				
	through A.					
41	. A solid is composed of a cylinder with hemispherical ends. If the whole length of	3				
	the solid is 90cm and the diameter of the hemispherical ends is 28cm, then find					
	the surface area of the solid. (Use $\pi = \frac{22}{\pi}$)					
	Or					
	A cone, a cylinder and a hemisphere are of the same base and same height Find					
	the ratio of their volumes.					
42	1 ² 2220 + ² 470 - 24 ² 420	3				
	Find the value of $\frac{4 \cos^2 30^\circ + \sin^2 45^\circ - 3\tan^2 60^\circ}{2\cos^2 60^0 \sin^2 60^0 + \cot^2 60^\circ}$	-				
12		_				
43	. If the mean of the following distribution is 30, their find the value of p	5				
	Class interval 0-10 10-20 20-30 30-40 40-50					
	Frequency 4 8 10 p 13					
	Or					
	(a) If \bar{x} represents the mean of n observations x_1, x_2, \ldots, x_n , then show that					
	$\sum_{i=0}^{n} (x_i - \bar{x}) = 0.$					
	(b) If each observation of a data is increased by 'a', then show that its mean also					
	increases by 'a'.					
44	. Construct a $\triangle ABC$ in which BC= 6cm, AB= 6cm and median AD = 4cm.	5				
	OR					
	Construct a triangle whose perimeter is 9.5 cm and base angles are 60° and 45°					

SAMPLE QUESTION PAPER Mathematics (211) Making Scheme

SECTION A

Question	Correct	Explanation	Marks
Number	option		
		Q.No. 1 to 17 are MCQs	
1.	(i) (d)	(i) $a + b = 12$	1
		$(a+b)^2 = 144$	
		$a^{2} + b^{2} + 2ab = 144$	
		$a^{2} + b^{2} + 2X 22 = 144$	
		a + b = 100	
	(ii)	(ii) $5x^2 - 13x - 6 = 5x^2 + 2x - 15x - 6$	
	(II) (a)	(11) 5x - 15x - 0 = 5x + 2x - 15x - 0 = y(5y + 2) = 3(5y + 2)	
		= -x(-3x + 2) - 5(-3x + 2) = (5x + 2) (x - 3)	
2	(i) (d)	(i) Verify by putting the values of x and y in the equation	1
2.	OR	OR	1
	(ii) (c)	(ii) $a_1/a_2 = b_1/b_2 = c_1/c_2 = -1/4$.	
		Therefore equations have infinitely many solutions	
		Option (c)	
3.	(i) (b)	(i) S.I = $(1632 \times 25 \times 5 \times 100)/(100 \times 4) = ₹510$	1
		Option (b)	
	OR	OR	
	(ii) (d)	(ii) $968 = P (1 + 10/100)^2$	
		$\therefore P = 800$	
		Option (d)	
4.	(i) (b)	(i) Let $P = 100y$.	1
		Then $Q = 60 \text{ y}$	
		$\frac{Q-P}{P} = 40y / 60 y = 2/3$	
		Q - P = (2/3)P = 66.66 P%	
		Therefore Q is 66.66 % more than P	
		Option (b)	
	OR	OR	
	(ii) (a)	(ii) The percentage of reduction is calculated with the new price of	
		the oil.	
		Let the price of cooking oil = $Rs. 100$	
		L · · · 250/ C100 25	
		Increase in price = 25% of $100 = 25$	
		$\therefore \text{ Increased price} = 100 + 25 = 125$	
		Required percentage of Reduction	
		$\frac{23}{125} \times 100\% = 20\%$	
		125	
5	(i)	(i) Angle measure of minor arc $BC = 360 - (84 + 140) = 136$	1
5		Ontion (c) $(1740) = 100$	1
	OR	OR	
	(ii) (d)	(ii) Central angle of minor arc $LB = 120$	

		$\angle LAB = 60$ (As the angle subtended by an arc at centre is double	
		the angle subtended by it any point on the remaining part of the	
		circle)	
		$\angle ALB = 180 - (50 + 60) = 70$	
		$x = \angle ALB = 70$ (Angles in alternate segment)	
		Option (d)	
6	(a)	$\widehat{CP} = \widehat{CR} = 8$	1
		AP = AQ = AB - BQ = 15 - BR = 15 - 4 = 11	
		AC = AP + CP = 11 + 8 = 19	
7.	(i) (a)		1
	OR		
	(ii) (b)		
8	(a)	OM ⊥AB.	1
		Therefore $AM = DM$ and $BM = CM$	
		Or AB = CD	
		Option (a)	
9	(b)		1
10	(c)		l
	(1) (d)	(1) Perimeter of square of side 11 cm = 44 cm	l
		Therefore circumference of circle = 44 cm	
		r = / cm	
		Or $\frac{(2 \times 22 \times 7 \times 7)}{7} = 154 \text{ cm}^2$	
		Option (d)	
	OP	OR	
	(ii) (b)	(ii) Area = $(13d)/2$	
		(13d)/2 = 156	
		d = 24 cm	
		Option (b)	
12	(a)	$\sin A + \sin^2 A = 1$	1
		$\sin A = 1 - \sin^2 A = \cos^2 A$	
		$\sin^2 A = \cos^2 A$	
		$1 - \cos^2 A = \cos^2 A$	
		$I = \cos^2 A + \cos^2 A$	
12	$(\mathbf{b}, \mathbf{d}_{\mathbf{b}})$	Option (a) (i) $(in A + in A)^2 = 2 - in A + in A$	1
13	(1) (b)	(1) $(\sin A + \cos A) - 2 \sin A \cos A$	1
		$= \sin A + \cos A + 2 \sin A \cos A - 2 \sin A \cos A$ $= 1$	
	OP		
	(ii) (c)	OK	
		P	
		Ϋ́Ν.	
		3k	
		X	
		M	
		2K	
		(11)	

		$PM^2 = (3K)^2 = (2k)^2$	
		$\mathbf{PM} = \sqrt{5}k$	
		$\tan X = \frac{PM}{M} = \frac{\sqrt{5k}}{M}$	
		OM = 2k	
		$\sqrt{5}$	
		$-\overline{2}$	
		Option (c)	
14	(b)		1
15	(c)	$\mathbf{S}_{\text{max}}^{\text{inverse}} \mathbf{P}(\mathbf{E}) + \mathbf{P}(\overline{\mathbf{E}}) = 1$	1
10	(0)	Since $P(E) + P(E) = 1$: $y = 1$	1
		y = 1 $\Rightarrow y^{3} - 4 = 1^{3} - 4 = -3$	
17	(b)	4 possible outcomes (H.H), (H.T), (T.H), (T.T)	
	Q.No. 18 to	27 are Objective type Questions of 2 marks	
18	(i)	(x+5)	1 x 2
	(ii)	- 4	
	(iii)	2	
10	(1V)	-2	1.2
19	(1) - R, (11)	-Q	1 X 2
20	(1)	Г Т	1 X Z
21	(i) $x^2 + 2xy$	$+ y^2 = (x+y)^2$	1 x 2
	(ii) $x^2 - 2xy$	$+y^2 = \frac{(x-y)^2}{(x-y)^2}$	
	(iii) $x^3 - y^3$	$-3x^{2}y + 3xy^{2} = (x-y)^{3}$	
	$(iv) x^3 - y^3$	$= \underline{(x+y)(x^2 - xy + y^2)}$	
22	(i) (b) 50/3		1 x 2
22	(11) (c) 50	1	1
23.	(1)	equal	1 X 2
	(iii)	two	
	(iv)	$\sqrt{2}a$	
24.	(i)	F	1 x 2
	(ii)	F	
25.	(i) r:2		1 x 2
	(ii) a:4		
	(111) 6 cm $(iv) 4 a^2$		
26	(i) (d) 75 m		1 x 2
20.	(i) (d) 75 m (ii) (b) 25 m	l	172
	(iii) (b) 25v	3 m	
	(iv) (c) 50 r	n	
27.	(i) 36		1 x 2
	(ii) 6		
	$\left (iii) \frac{1}{6} \right $		
	$(iv)\frac{5}{6}$		
28.	(i) (a) equila	ateral triangle	1 x 5
	(ii) (b) 12 m		
	(iii) (d) 240	°	

(iv) (a) 60°	
(v) (b) $4\sqrt{3}$ m	
(vi) (b) $8\sqrt{3}$ m	
(vii) (b) 30°	

SECTION B

		Marks	
29	Steps of construction	1	2
	1. Draw a circle with radius 3cm		
	2. Draw ∠OAB = 90°		
	AB is the required tangent		
	A B	1	
	2		
30	$6a^2 = 294 \Rightarrow a = 7$	1	2
	Volume = 7^3 = 343 cm ³	1	
	OR	OR	
	Remaining area = $\pi r^2 - a^2$	1	
	$= 3.14 \times 4 \times 4 - (1.5)^2 = 47.74 \text{ cm}^2$	1	
31	$2x^2 + kx + 3 = 0$		2
	Discriminate = $k^2 - 4 \times 2 \times 3 = k^2 - 24$	1/2	
	Roots are equal $\Rightarrow k^2 - 24 = 0$	1/2	
	$k = \pm \sqrt{24} = \pm 2\sqrt{6}$	1	
32	5, 10, 15, 125	1/2	2
	a=5, d=5	1/2	
	$t_n = 125 = 5 + (n-1)5 \Rightarrow n = 25$	1	
	$S_{25} = \frac{25}{2} (5 + 125) = 1625$		
	OR a = 25, d = 3, S _n = 1070	OR	
	$S_n = \frac{n}{2} \left(2a + (n-1)(3) \right)$	1/2	
	$1070 = \frac{\bar{n}}{2} \left(2(25) + (n-1)(3) \right)$		
	$3n^2 + 47n - 2140 = 0$	1/2	
	n = 20	1	

33	Cash price = Rs. 22000		2
	Cash down payment = Rs. 10000		
	Balance payment = Rs. 12000	1	
	$Interest = 600 = \frac{12000 \times 6 \times r}{100 \times 12}$	1	
	r = 10		
34	$102010 = P_1 \left(1 + \frac{12}{1200} \right)^2 P_1 = Rs. 100000$	1/2	2
	$102010 = P_2 \left(1 + \frac{12}{100} \right) P_2 = Rs. 101000$	1/2 1/2	
	Cash price of the car = 50000 +100000+101000 = Rs. 251000	1/2	
35	$\frac{4 \times 1 + 3x}{7} = -2x = -6$		2
	$\frac{20+3y}{7} = -1 \ y = -9$	1 1⁄2	
	Point B is (-6, -9)	1/2	
	centroid of the triangle whose vertices are $(5,-1)$, $(-3,-2)$ and $(-1,8)$.	Or	
	$x = \frac{x_1 + x_2 + x_3}{3} = \frac{5 + (-3) + (-1)}{3} = \frac{1}{3}$	1	
	$y = \frac{y_1 + y_2 + y_3}{3} = \frac{-1 + (-2) + (8)}{3} = \frac{5}{3}$	1	
	$\left(\frac{1}{3},\frac{5}{3}\right)$		

36	A N		2
	16	1	2
	30		
		4	
	$\frac{AB}{16} = \sin 30^{\circ} = \frac{1}{2}$	1	
	$\Rightarrow AB = 8m$		
	OR	OR	
	AN		
	100 m	1	
	60		
	в		
	$AB = \sqrt{3}$		
	$\frac{110}{100} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$		
	\Rightarrow AB = 50 $\sqrt{3}$ m	1	
			-
37	20, 24, 25, 28, 30, 31, 33, 38	1	2
	$Median = \frac{2}{2} = 29$ When 25 is remayed modion = 20	1/2	
	Median increases by 1	1/2	
38.	$t_7 = a + 6d = 27$	1	3
	$t_{11} = a + 10d = 43$	1	
	\Rightarrow a=3, d=4	1	
20	$t_{20} = a + 19d = 3 + 19x4 = 79$	1/	2
39.	x, 12 - x $x^2 + (12 - x)^2 - 74$	⁷ 2	3
	$x^{2} - 12x + 35 = 0$	1	
	$\Rightarrow x=7, 5$	1/2	
	greater number is 7		
40.	$D = \left(\frac{5+7}{2}, \frac{-2-2}{2}\right) = (6, -2)$	1	3
	$AD = \sqrt{(6-6)^2 + (4+2)^2} = 6 \ cm$	1	
	$AD = \sqrt{(0 - 0)^{2} + (4 + 2)^{2}} = 0 cm$	1	
	\bigwedge		
	B∠C		

41.)	1	3
		h = (90	(-2x14) = 6	2 cm			
	Surface area = $2\pi rh + 4\pi r^2$ = $2\pi r(h+2r)$					1	
	$= 2 \times \frac{22}{-} \times 1$	4 (62 + 28	3)			-	
	7920 cm^2		-			1	
			OR				
	Let height of c	one = h	C	h - ' - h C h -		Or	
	Height of cone	e = height o	f cylinder	= height of hei - diamotor of	misphere homisphore		
	h = h = 2r		i cynnuei		nennsphere	1/2	
	Ratio of volum	$es = V_1 : V$	2:V3				
		$=\frac{1}{2}\pi \eta$	$h^2h:\pi r^2h$	$n:\frac{4}{2}\pi r^3$			
		1 ₂	(\mathbf{a}) 2	3 4 3		1½	
		$=\frac{1}{3}r^{2}$	$(2r):r^2($	$2r): \frac{1}{3}r^{3}$			
	= 2:3:4					1	
42.		4 cos ² 30 ^o	+ <i>sin</i> ² 45	$^{o}-3tan^{2}60^{o}$			3
	-	$2cos^26$	0°sin²60°	' + <i>cot</i> 45°			
		$4\left(\frac{\sqrt{3}}{2}\right)^2$ +	$-\left(\frac{1}{\sqrt{2}}\right)^2 - 3$	$(\sqrt{3})^2$		1	
		$=$ $2\left(\frac{1}{2}\right)$	$\Big)^2 \Big(\frac{\sqrt{3}}{2}\Big)^2 +$	1			
		$3+\frac{1}{2}-9$				4	
		$=\frac{3}{8}+1$				1 1	
		$\frac{-11}{2}$					
		$= \frac{2}{11} =$	- 4			1	
43.	Class	8		$X_i - a_i$			5.
	Interval	f _i	Xi	$u_i = \frac{n_i - u}{h}$	f _i u _i		
	0-10	4	5	-2	-8	1	
	10-20	8	15	-1	-8	1	
	20-30	10 n	25	U 1	0	1	
	40-50	13	45	2	26		
		35+p			p+10		
	<i>mean</i> = 25 +	$-\frac{p+10}{35+p} \times 1$	0 = 30				

	$\frac{p+10}{25} \times 10 = 5p = 15$	1	
	35 + p Or	1	
	(a) As \bar{x} is the mean of n observations x_1, x_2, \dots, x_n	-	
	$\bar{x} = \frac{x_1 + x_2 + x_3 + \cdots \dots x_n}{x_1 + x_2 + x_3 + \cdots + x_n}$	Or	
	$x_1 + x_2 + x_3 + \cdots \dots \dots x_n = n\bar{x}$	3	
	$\sum_{i=0}^{n} x_i = n\bar{x}$		
	Now to show: $\sum_{i=0}^{n} (x_i - \bar{x}) = 0$ L H S = $\sum_{i=0}^{n} (x_i - \bar{x}) = \sum_{i=0}^{n} x_i - \sum_{i=0}^{n} \bar{x}_i$		
	$= n\bar{x} - \bar{x} \times n = 0 = \text{R.H.S.}$		
	(b) As x is the mean of n observations x_1, x_2, \dots, x_n $x_1 + x_2 + x_3 + \dots + x_n$		
	$\bar{x} = \frac{1}{n}$		
	let \overline{X} is the mean of n observations $(x_1+a), (x_2+a), \dots$		
	(x_n+a) = $(x_1+a) + (x_2+a) + \dots + (x_n+a)$		
	$X = \frac{1}{n}$	2	
	$\overline{\mathbf{v}}$ $x_1 + x_2 + x_3 + \cdots + x_n$, $a + a + \cdots + a$		
	$X = \frac{1}{n} + \frac{1}{n}$		
	=x+a		
44.	B D C	3	5
44.	Steps of Construction B C B C D C D Steps of Construction 1. Draw a line segment BC= 6cm 2. Bisect BC at D 3. Draw Δ ABD such that AB=6cm AD=4cm 4. Draw AC Δ ABC is the required triangle OR To construct a triangle whose perimeter is 9.5 cm and base angles are 60° and 45°	3 1/2 1/2 1/2 1/2 1/2	5
44.	Steps of Construction B C B C D C C D C C C Steps of Construction 1. Draw a line segment BC= 6cm 2. Bisect BC at D 3. Draw Δ ABD such that AB=6cm AD=4cm 4. Draw AC Δ ABC is the required triangle OR To construct a triangle whose perimeter is 9.5 cm and base	3 1/2 1/2 1/2 1/2 1/2	5
44.	Steps of Construction B C B C D C C Steps of Construction 1. Draw a line segment BC= 6cm 2. Bisect BC at D 3. Draw Δ ABD such that AB=6cm AD=4cm 4. Draw AC Δ ABC is the required triangle OR To construct a triangle whose perimeter is 9.5 cm and base angles are 60° and 45° we go through the following steps:	3 ½ ½ ½ ½ ½	5

