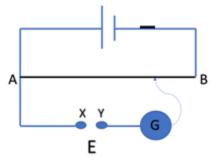

## National Institute of Open Schooling Senior Secondary Lesson 17-ELECTRIC CURRENT WORKSHEET – 17

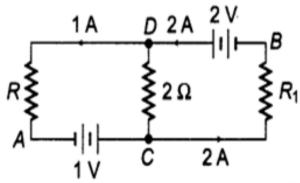
- **Q1.** A cell having an emf E and internal resistance r is connected across a variable external resistance R. As the resistance R is increased, plot the graph of potential difference V across R.
- **Q2.** In a Wheatstone bridge if the battery and galvanometer are interchanged then comment upon the deflection in galvanometer.




- **Q3**. A steel wire is stretched to make it 0.2% longer. What is the percentage change in its resistance and resistivity?
- **Q4.** The equivalent resistance between the terminal point P and Q is  $4\Omega$  in the given circuit. Find out the resistance of R in ohms.



- **Q5.** Two conducting wires P and Q are having same diameter but made up of different materials. Both the wires are joined in series across a battery. If the number density of electrons in P is 3 times than in Q, find the ratio of drift velocity of electrons in the two wires.
- **Q6.** Two conducting wires X and Y of same diameter but different materials are joined in series to form a battery. If the number density of electrons in X is twice that in Y, find the ratio of drift velocity of electrons in the two wires. Explain if they are connected in parallel?


**Q6.** For the potentiometer circuit shown in the given figure point X and Y represent the two terminals of a cell of an unknown e.m.f. E.A student observed that when the jockey is moved from end A to end B of the potentiometer wire, the deflection in the galvanometer remains in the same direction.



- a) What are two possible faults in the circuit that could result in this observation?
- **b)** If the galvanometer deflection at the end B is
  - i) More than at end A
  - ii) Less than at end A,

Which of the two faults, listed above, would be there in the circuit? Give reasons in support of your answer in each case.

**Q8.** In the given circuit, assuming point A to be at zero potential, use Kirchhoff's rules to determine the potential at point B



- **Q9.** Two tungsten filaments with resistance  $R_1$  and  $R_2$  respectively are connected first in series and then in parallel in a lighting circuit of negligible internal resistance. If  $R_1 >> R_2$  answer the following questions
  - a) Which lamp will glow more brightly when they are connected in series?
  - **b**) If the lamp of résistance R<sub>2</sub> now burns out and the lamp R<sub>1</sub> alone is plugged in; will net illumination increase or decrease?
  - c) Which lamp will glow more brightly when they are connected in parallel?
  - **d**) If the lamp of resistance  $R_1$  now burns out, how will the net illumination produced change?
- **Q10.** At the temperature  $0^{0}$ C, the electric resistance of conductor B is n times that of conductor A. Their temperature coefficients of resistance are equal to  $\alpha_{2}$  and  $\alpha_{1}$  respectively. Find the resistance and temperature coefficients of a resistance of a circuit segment consisting of these two conductors when they are connected in series.