SENIOR SECONDARY COURSE: CHEMISTRY (313)

26

ALCOHOLS, PHENOLS AND ETHERS

ALCOHOLS

- Hydroxyl (–OH) derivatives of alkane are called alcohols.
- Alcohols are classified as 1°, 2° and 3°

- Formaldehyde gives 1^o alcohol and ketones gives tertiary alcohol.
- (iv) By reduction of carbonyl compounds:

$$RCHO + 2H \xrightarrow{P_3} RCH_2OH$$

$$H = O + 2H \xrightarrow{NaBH_4} H = CH_2OH$$

$$R = O + 2H \xrightarrow{NaBH_4} R = CH_2OH$$

$$R = O + \frac{NaBH_4}{R} R = CHOH$$

(v) By reduction of esters with LiAlH₄ or Na/C₂H₅OH:

$$R - C - OR' + 4H \xrightarrow{\text{LiAlH}_4} R - CH_2OH + R' - OH$$

(vi) By hydrolysis of esters:

$$R - C - O - R' + H_2O \xrightarrow{\text{conc}}_{H_2SO_4} R - C - OH + R' - OH$$

(vii) From alkyl halides:

$$R - X + KOH (aq) \rightarrow R - OH + KX$$

(viii) By reduction of acids and their derivatives:

 $R - COOH \longrightarrow RCH_{2}OH$

$$R - COCl + 2H_2 \xrightarrow{Ni} R.CH_2OH + HCl$$

Structure and Physical Properties

- Most of the common alcohols are colourless liquids at room temperature. Methyl alcohol, ethyl alcohol, and isopropyl alcohol are free-flowing liquids with fruity odours. The boiling points of alcohols are much higher than those of alkanes with similar molecular weights.
- The structure of alcohols is similar to that of water.

 $\frac{R}{H}$ C $\frac{OH}{R}$ + Mg $\frac{Br}{OH}$

SENIOR SECONDARY COURSE: CHEMISTRY (313)

Reactions of Alcohols

1. Acidic and Basic behavior

Alcohol behaves both as acids and bases. They are weakly acidic. A strong base such as a hydride ion (H–) in sodium hydride (NaH), can remove the proton from the alcohol molecule and an alkoxide ion results.

$$R \longrightarrow \overrightarrow{Base} \qquad R \longrightarrow \overrightarrow{Bis} + B \longrightarrow H$$

Alcohol Base Alkoxide ion Protonated base

$$R \longrightarrow O \longrightarrow H + H_2 O \xleftarrow{K_a} R \longrightarrow O^- + H_3 O^+$$
$$K_a = \frac{[H_3 O^+][RO^-]}{[ROH]}$$

 $pK_a = -\log K_a$

2. Formation of Alkoxides

$$\begin{array}{c} CH_{3}CH_{2}OH + Na \longrightarrow CH_{3}CH_{2}O^{-}Na^{+} + \frac{1}{2}H_{2}(g) \\ \\ Ethanol & Sodium \\ metal & ethoxide \end{array}$$

$$(CH_3)_3C - OH + K \longrightarrow (CH_3)_3C - O^-K^+ + \frac{1}{2}H_2(g)$$

tert-Butyl alcohol Potassium Potassium

3. Conversion to Alkyl Halides

$$CH_{3} \xrightarrow{CH_{3}} OH + HCl (conc.) \xrightarrow{298 \text{ K}} CH_{3} \xrightarrow{C} OH + H_{2}O \xrightarrow$$

Lucas Test: Lucas test is used to differentiate and categorize primary, secondary and tertiary alcohols using a solution of anhydrous zinc chloride in concentrated hydrochloric acid.

4. Formation of Alkenes

- Alcohols can be dehydrated to alkenes. This reaction requires an acidic catalyst and is favoured at higher tempratures.
- The ease of dehydration follows the followingorder amongst alcohols.
 Tertiary alcohols > secondary alcohols > primary alcohols

5. Dehydration to form Ethers

PHENOLS

The name phenol is specifically used for the following compound (hydroxybenzene) in which one hydroxyl group is attached to the benzene ring.

Nomenclature of Phenols

Some representative examples of phenolic compounds are given below:

CHEMISTRY (313)

SENIOR SECONDARY COURSE: CHEMISTRY (313)

2. From Cumene Hydroperoxide

Physical Properties

- These are colourless liquids or crystalline solids but become coloured due to slow oxidation with air.
- Phenol is also called carbolic acid.
- Because of the presence of polar -OH bond, phenols form intermolecular Hbonding with other phenol molecules and with water.

Reactions of Phenols

1. Acidic and Basic Nature

Aqueous solutions of phenol are weakly acidic and turn blue litmus slightly to red. Phenol is neutralized by sodium hydroxide forming **sodium phenate or phenolate**, but being weaker than carbonic acid, it cannot be neutralized by sodium bicarbonate or sodium carbonate to liberate carbon dioxide.

2. Electrophilic Substitution Reactions

(i) Halogenation:

(ii) Nitration:

CHEMISTRY (313)

LEARNER'S GUIDE

SENIOR SECONDARY COURSE: CHEMISTRY (313)

LEARNER'S GUIDE

SENIOR SECONDARY COURSE: CHEMISTRY (313)

Test Yourself

Question: Give the IUPAC name of the following compound:

$$CH_{3} - C = C - CH_{2}OH$$
$$| | CH_{3} Br$$

Answer:

$${}^{4}_{CH_{3}} - {}^{3}_{C} = {}^{2}_{C} - {}^{1}_{CH_{2}}OH$$

 ${}^{|}_{CH_{3}} = {}^{2}_{Br}$

IUPAC name: 2-Bromo-3-methylbut-2-ene-1-ol

Stretch Yourself

- Write the structure of the molecule of a compound whose IUPAC name is: 1-phenylpropan-2-ol
- 2. How would you convert ethanol to ethene?
- 3. Draw the structure of 2, 6-Dimethylphenol.
- 4. Ortho nitrophenol has lower boiling point than p-nitrophenol. Why?
- 5. The C-O bond is much shorter in phenol than in ethanol. Give reason.

LEARNER'S GUIDE

SENIOR SECONDARY COURSE: CHEMISTRY (313)

