MARKING SCHEME
subject:313-Chemistry
MAX. MARKS: 80

Q. NO			EXPECTED VALUE POINTS FOR EACH STEP	$\begin{aligned} & \text { DISTRIBUTION } \\ & \text { OF MARKS } \end{aligned}$	TOTAL MARKS
SET					
A	B	C			
1	-	-	(C)	1	1
2	9	7	(B)	1	1
3	-	-	(B)	1	1
4	7	10	(D)	1	1
5	-	-	(B)	1	1
6	5	1	(C)	1	1
7	-	-	(D)	1	1
8	3	5	(A)	1	1
9	2	4	(C)	1	1
10	1	2	(D)	1	1
11	19	15	(i) NH_{3} (ii) $\mathrm{CH}_{2} \mathrm{O}$ (iii) CH (iv) S	$4{ }^{11 / 2}$	2
12	-	-		1	2
13	15	19	The radial distribution curve for a 2 s orbital shows two maxima as compared to 1 s orbital which shows only one maxima For $1 \mathrm{~s}=\mathrm{n}-1=1-0=1$ For $2 \mathrm{~s}=\mathrm{n}-1=2-0=2$	1 $1 / 2+1 / 2$	2
14	-	-	In liquids, the attractive forces are strong enough to keep the molecules moving within a definite boundary. Thus they maintain definite volume. These intermolecular forces are not strong enough to keep them in a definite position. The molecules can, therefore, move around and take the shape of the container in which they are kept.	1 1	2
15	-	-	Enthalpy of combustion is the enthalpy change (heat evolved) accompanying the complete combustion of 1 mole of a	1	2

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
substance in oxygen at a given temperature and 1 bar pressure. For example.
\[
\begin{aligned}
\& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
\& \Delta \mathrm{H}^{\circ}=-1366.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\] \\
Enthalpy of combustion of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) is
\[
=-1366.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
\]
\end{tabular} \& 1 \& \\
\hline 16 \& 14 \& 17 \& \begin{tabular}{l}
(A) 5 Chlorides \\
(B) \(\quad \mathrm{Cl}_{2}(\mathrm{~g})\) \\
(C) \(\mathrm{N}_{2}\) \\
(D) \(\mathrm{Cl}_{2} \mathrm{O}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline 17 \& 13 \& 14 \& \begin{tabular}{l}
(i) \\
(ii) \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \frac{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}{416 \mathrm{~K}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}\)
\end{tabular} \& 1 \& 2 \\
\hline 18 \& - \& - \& \begin{tabular}{l}
Polymers present in plants and animals which control various life processes in plants and animals are called biopolymers. \\
Examples: \\
(i) Starch \\
(ii) Cellulose \\
(Or any other suitable example)
\end{tabular} \& 1

$1 / 2$
$1 / 2$ \& 2 \\

\hline 19 \& 11 \& 12 \& | Butyl rubber | | |
| :--- | :--- | :--- |
| Uses | (i) | Making inner tubes of tyres |
| | (ii) | Making conveyor belts etc. | \& 1

$1 / 2$
$1 / 2$ \& 2 \\

\hline 20 \& - \& - \& | Since MgSO_{4} is an ionic compound so undergoes complete ionization in the following : |
| :--- |
| The number of moles of $\mathrm{MgSO}_{4} \mathrm{n}=$ Mass/molar mass $=4 \mathrm{~g} / 120 \mathrm{~g} \mathrm{~mol}^{-1}=0.03333 \mathrm{~mol}$. |
| Mass of water is 100 g or $100 \mathrm{~g} / 1000 \mathrm{~g} \mathrm{~kg}-1=0.1 \mathrm{~kg}$ |
| The molality of the solution is $\mathrm{m}=$ moles of $\mathrm{MgSO}_{4} /$ mass of the water in kg $\mathrm{m}=0.03333 \mathrm{~mol} / 0.1 \mathrm{~kg}=0.3333 \mathrm{~m}$ |
| The vant Hoff factor $\mathrm{i}=2$ (as dissociation of 1 molecule of magnesium sulphate gives 2 ions) |
| The elevation in the boiling point $\Delta \mathrm{Tb}=\mathrm{i} \times \mathrm{Kb}$ $\mathrm{m}=2 \times 0.52 \times 0.3333=0.3466 \mathrm{~K}$ |
| The boiling point of pure water is 373.15 K . |
| The boiling point of solution will | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 4 \\
\hline
\end{tabular}

			be $373.15+0.3466=373.4966 \mathrm{~K} \simeq 373.5 \mathrm{~K}$.		
21	24	26	$\begin{aligned} & \mathrm{HC} \equiv \mathrm{CH}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \\ & \Delta_{\mathrm{r}} \mathrm{Ho}=\text { B.E. }(\text { Reactants })-\text { B.E. }(\text { Products }) \\ & =[\text { B.E. }(\mathrm{C} \equiv \mathrm{C})+2 \times \text { B.E. }(\mathrm{C}-\mathrm{H})+\text { B.E. }(\mathrm{H}-\mathrm{H})]-[\text { B.E. }(\mathrm{C}=\mathrm{C})+4 \text { B.E. }(\mathrm{C}-\mathrm{H})] \\ & {[827.6+2 \times 414.0+430.5]-[606.0+4 \times 414.0]=-175.9 \mathrm{kJmol}-1} \end{aligned}$	$\begin{gathered} \hline 1 / 2 \\ 1 / 2 \\ 1 \\ 1 \\ 1 \end{gathered}$	4
22	23	25	Expression of Ostwald's dilution law in the case of a weak electrolyte Consider the dissociation of a weak electrolyte BA. Let $V \mathrm{dm}^{3}$ of a solution contain one mole of the electrolyte. Then the concentration of a solution is, $\mathrm{C}=1 / \mathrm{V} \mathrm{mol} \mathrm{dm}^{-3}$. Let a be the degree of dissociation of the electrolyte. Applying the law of mass action to this dissociation equilibrium, we have, $\begin{aligned} & K=\frac{\left[\mathrm{B}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{BA}]} \\ & \therefore K=\frac{\frac{\alpha}{V} \times \frac{\alpha}{V}}{\frac{(1-\alpha)}{V}}=\frac{\alpha^{2}}{(1-\alpha) V} \end{aligned}$ As the electrolyte is weak, α is very small as compared to unity, $\begin{aligned} & \therefore(1-\alpha) \approx 1 . \\ & \therefore K=\frac{\alpha^{2}}{V} \quad \therefore \alpha=\sqrt{K V} \quad \therefore \alpha \propto \sqrt{V} \\ & \frac{1}{V}=C, \text { where } C=\text { concentration in mol dm } \\ & \therefore K=\alpha^{2} C \quad \therefore \alpha=\sqrt{\frac{K}{C}} \\ & \therefore \alpha=\sqrt{K \times V} \\ & \because C=\frac{1}{V} \text { or } V=\frac{1}{C} \\ & \alpha=\sqrt{\frac{K}{C}} \end{aligned}$ This is the expression of Ostwald's dilution law. Thus, the degree of dissociation of a weak electrolyte is directly proportional to the square root of the volume of the solution containing 1 mole of an electrolyte.	1/2	4
23	25	21	(a) BaCO_{3} It is because as the size of cation increase polarizing power of cation decreases, stability increases (b) This happens because the energy difference between 5 f , 6 d and 7 s subshells of the actinoids is very small and	1 1	4

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
hence electron can be accomodated in any of them. \\
(c) All the outer electrons participate in bonding due to comparable energy of \(5 \mathrm{f}, 6 \mathrm{~d} \& 7 \mathrm{~s}\) orbitals.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& \\
\hline 24 \& 22 \& 20 \& \begin{tabular}{l}
(A) \(\mathrm{FeO} . \mathrm{Cr}_{2} \mathrm{O}_{3}\) \\
(B) \(\quad \mathrm{Na}_{2} \mathrm{CrO}_{4}\) \\
(C) \(\quad \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\) \\
(D) \(\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\) \\
\(4 \mathrm{FeO} . \mathrm{Cr}_{2} \mathrm{O}_{3}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2}(\mathrm{au}) \rightarrow\) \\
\(2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+8 \mathrm{CO}_{2}\) \\
\(2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}\) \\
\(\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{NaCl}\)
\end{tabular} \& \[
\begin{gathered}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 \\
\\
1 / 2 \\
1 / 2
\end{gathered}
\] \& 4 \\
\hline 25 \& 21 \& 22 \& \begin{tabular}{l}
(i) Aldehyde having \(\alpha\)-hydrogen atom on reaction with dilute NaOH give aldols product \\
(ii) When primary amine is heated with chloroform in the presence of alcoholic sodium or potassium hydroxide, then the corresponding isocyanide is formed. Isocyanides are also known as carbylamines, hence this reaction is called as Carbylamine reaction.
\[
\begin{aligned}
\& \mathrm{Me}_{3} \mathrm{CNH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{NaOH} \rightarrow \mathrm{Me}_{3} \mathrm{CNC}+3 \mathrm{NaCl}+3 \\
\& \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]
\end{tabular} \& 1
1

1
1 \& 4 \\

\hline 26 \& 20 \& 23 \& | (a) Aliphatic amino $>\mathrm{NH}_{3}>$ Aromatic amine. The aromatic amines are weaker base than ammonia because the aromatic ring is electron withdrawing. It reduces the electron density at nitrogen whereas aliphatic amines are more basic than ammonia because aliphatic group is electron sealing. It increases the electron density at nitrogen. |
| :--- |
| (b) It is due to the existance of the phenomenon of resonance which cause carbon - halogen bond to acquire double bond character in haloarenes. |
| (c) The greater acidity of phenols than alcohols can be attributed to the resonance stabilization of the phenoxide ion. | \& 1

1
1
1
1 \& 4 \\

\hline 27 \& 30 \& 29 \& | (a) Calculation of Lattice energy : |
| :--- |
| For LiF: $\Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{LiF}}=\Delta_{\text {sub }} \mathrm{H}_{\mathrm{Li}}+\Delta 1 / 2 \mathrm{H}_{\mathrm{F}-\mathrm{F}}+\Delta_{\mathrm{i}} \mathrm{H}_{\mathrm{Li}}+\Delta_{\mathrm{eg}} \mathrm{H}_{\mathrm{F}}+\Delta_{\mathrm{l}} \mathrm{H}_{\mathrm{LiF}}$ or $-594.1=155.2+150.6+520-328+\Delta_{1} \mathrm{H}_{\text {LiF }}$ | \& 1/2 \& 6 \\

\hline
\end{tabular}

			$171.6 \mathrm{kJmol}^{-1}$ (b) (i) NH_{3} molecule consists of 3 bond pair and one lone pair. (ii) Due to difference in the mutual repulsion between bond pair-bond pair and bond pair-Lone pair is distorted. (c) (i) It has zero dipole moment due to its symmetrical tetrahedral shape. (ii) Dipole moment : Magnitude of charge (Q) X distance of separation (r).	$1 / 2$ 1 1 1 1 1	
28	29	27	(a) We know that $\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$ $\therefore \quad \text { At } \mathrm{T}_{1}, \mathrm{~K}_{1}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}} \text { and }$ At $\mathrm{T}_{2}, \mathrm{~K}_{2}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$ Dividing K_{1} by K_{2} we get $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{Ae}}{\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}} / \mathrm{RT}}$ taking logarithm $\ln \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}_{\mathrm{T}}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$ $=\log \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{2-\mathrm{Ea}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$ (b) For first order $\begin{aligned} & l_{1 / 2}=\frac{0.693}{\mathrm{~K}} \\ & t_{1 / 2}=\frac{0.693}{5.5310^{-1} \mathrm{~s}^{-1}} \\ & =1.26310^{14} \mathrm{~s} \end{aligned}$ (deduct $1 / 2$ mark if unit not given) (c) At Cathod: H_{2} gas At Anode : O_{2} gas	$1 / 2$ $1 / 2$ 1 1 1	6
29	28	30	(a) (b) (i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ The element Fe is in +3 oxidation state. As CN^{-}	$1 / 2+1 / 2$ $1 / 2$ 1	6

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
linked together to form three dimensional network. These polymers are hard, rigid and brittle. \\
Examples: Bakelite \\
Melamine \\
(or any other suitable example)
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \& \\
\hline 13 \& \& \begin{tabular}{l}
(i) The standard state of a substance is its most stable state at one bar pressure and at specific temperature. \\
(ii) The enthalpy of formation of the most stable form of an element is zero.
\end{tabular} \& 1
1 \& 2 \\
\hline \& 16 \& \& \(1 / 2\)
\(1 / 2\)

1 \& 2 \\

\hline \& 18 \& | (i) Blood is a colloidal solution and is negatively charged. On applying a solution of FeCl_{3} bleeding stops and clotting of the colloidal particles of blood takes place. |
| :--- |
| (ii) It is because colloidal dust particles floating about in the sky scatter blue light and makes the sky blue. | \& 1

1 \& 2 \\

\hline \& 24 \& | The van't Hoff factor can be calculated by using the following relation $\begin{aligned} & \Delta \mathrm{T} f=\mathrm{i} \times \mathrm{K} f \times \mathrm{m} \\ & \Delta \mathrm{~T}_{f}=i \times \mathrm{K} f \times \frac{\mathrm{WB} \times 1000}{\mathrm{MB} \times \mathrm{WA}_{\mathrm{A}}} \end{aligned}$ |
| :--- |
| Given $\begin{aligned} & \Delta \mathrm{T}_{f}=0.45 \mathrm{~K}^{\prime} \\ & \mathrm{K}_{f}=5.12 \mathrm{~K} \mathrm{Kg} \mathrm{~mol}^{-1} \\ & \mathrm{~W}_{\mathrm{B}}=0.3 \mathrm{~g} \\ & \mathrm{M}_{\mathrm{B}}=60 \mathrm{~g} \mathrm{~mol}^{-1} \end{aligned}$ |
| Putting these values in eq - (i) we get $\begin{aligned} & 0.45=i \times 5.12 \times \frac{0.3 \times 1000}{60 \times 30} \\ & i=0.527 \end{aligned}$ |
| Since $i=<1$, hence ethanoic acid should be associated in benzene. | \& $1 / 2$

$1 / 2$
1
1
1
1 \& 4 \\
\hline \& \& - 000 - \& \& \\
\hline
\end{tabular}

