6

Work, Energy and power

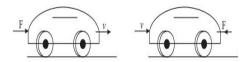
Work

- The work done by a force is the product of the magnitude of a force component in the direction of the displacement and displacement of this object
- If force **F** is acting at angle θ with respect to displacement **d** of the object
- $W = F\cos\theta.d \text{ or } W = F.d$
- Dimension formula

W = force * displacement

= Mass * Acceleration*

distance


=
$$[M][LT^{-2}][L]$$

= $[ML^2T^{-2}]$

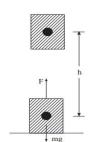
- SI unit Joule
- $1 \text{kWh} = 3.6 \times 10^6 \text{J}$

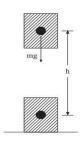
Positive work and negative work

Positive work	Negative
	work
Force and	Force is
displacement	opposite to
is parallel to	displacement
each other.	
$0 \le \theta \le 90$	90< θ≤ 180
$W = Fdcos0^0$	W =
	Fdcos180 ⁰
W = F d	W = -F d
External force	Force oppose

favour the	the motion of
motion of the	the body.
body.	

Work done by Force of Gravity


• The work done against the force mg and the displacement is upward


 $W = Fd \cos 180^{0}$

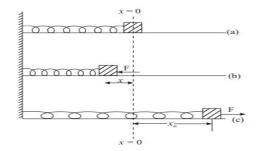
- = -mgh
- The force and displacement d are in the same direction

 $W = Fd \cos 0^0$

= mgh

- When the object is lifted up, the work done by the gravitational force is negative but the work done by the person lifting the object is positive
- When the object is being lowered the work done by the gravitational force is positive but the work done by the person lowering the object is negative.

Work done by a variable force


 magnitude and direction of a force varies with position, the work done by such a force for an infinitesimal displacement is given by

$$\Delta W = F(x) \Delta x$$

$$W = \sum_{\lim \Delta x \to 0} F(x) \Delta x$$

Work done by a spring

F =-kx (Hook's Law)

Where k is spring constant

Power

- The rate at which work is done is called power.
- Average power = work done/ time taken
- Unit of power = joule/second= watt

- Dimension of power [ML²T⁻
- 1k W h = 3.6 MJ(mega joule)

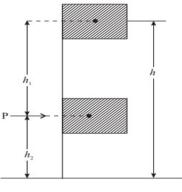
Work and Kinetic Energy

• Kinetic energy

The energy possessed by a body by virtue of its motion is called kinetic energy. Let m = mass of the body, v = velocity of the body then K.E. = $\frac{1}{2}$ m v^2

Work energy theorem

 The work energy theorem states that the work done by the resultant of all forces acting on a body is equal to the change in kinetic energy of the body.


Potential energy

 Object possess another kind of energy due to their position in space. This energy is known as Potential Energy.
 Work = force * distance

Conservation of Energy

- The total energy of an isolated system always remain constant.
- The energy may change its form.

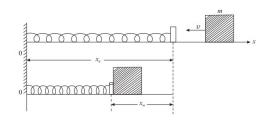
Conservation of mechanical energy during the freefall of a body

$$V^2 = u^2 + 2gs$$

$$U=0$$
, $s=h_1$

$$V^2 = 2gh_1$$

K.E. =
$$\frac{1}{2}$$
 mv²
= (m/2) 2gh₁

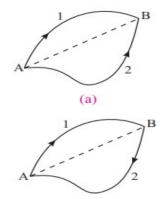

$$K.E. + P.E. = mgh_1 + mgh_2$$

 $= mgh_1$

$$=$$
 mgh

Total energy is conserved.

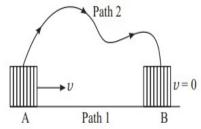
Conservation of mechanical energy for a mass oscillating on a spring


$$\frac{1}{2} k x_m^2 = \frac{1}{2} m v^2$$

The total energy is conserved.

Conservative and Dissipative Forces

Conservative forces

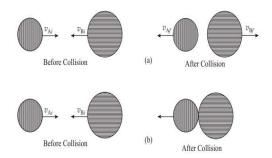

• When the force is independent of path followed by the object known as conservative force.

- A conservative force has a property that the work done by a conservative force is independent of the path.
 W_{AB}(along 1) = -W_{BA}(along 2)
 W_{AB}+ W_{BA} = 0
- The work done by the conservative force on an object is zero when the object moves around a closed path and return back to its starting point.

Non conservative force

• A non-conservative force has a property that the work done by a conservative force is dependent of the path.

Elastic and Inelastic collision


- When two bodies interact, it is termed as collision.
- Collision is an isolated event in which a strong force acts between two or more bodies for

a short time as a result of which the energy and momentum of the interacting particle change.

• Types of collision : on the basis of kinetic energy

Perfectly	Perfectly
elastic	Inelastic
collision	collision
If the forces	When two
of interaction	colliding bodies
between the	stick together
two bodies	after the collision
are	and move as one
conservative,	single unit, it is
the total	termed as
kinetic energy	perfectly
is conserved	inelastic collision
If in a	If in a collision
collision,	two bodies stick
kinetic energy	together or move
after collision	with same
is equal to	velocity after the
kinetic energy	collision, the
before	collision is said
collision, the	to be perfectly
collision is	inelastic
said to be	
perfectly	
elastic.	
Coefficient of	Coefficient of
restitution e =	restitution $e = 0$
1	
Examples:	Example:
(1) Collision	Collision
between	between a bullet
atomic	and a block of
particles (2)	wood into which
Bouncing of	it is fired. When
ball with	the bullet
same velocity	remains embeded
after the	in the block.
collision with	
earth.	

Elastic Collision (Head on) For conservation of momentum

$$m_A v_{Ai} + m_B v_{Bi} = m_A v_{Af} + m_B v_{Bf}$$

For conservation of kinetic energy

$$\frac{1}{2}m_{A}v_{Ai}^{2} + \frac{1}{2}m_{B}v_{Bi}^{2}$$

$$= \frac{1}{2}m_{A}v_{Af}^{2} + \frac{1}{2}m_{B}v_{Bf}^{2}$$

$$v_{Af} = \frac{2m_{B}v_{Bi}}{m_{A} + m_{B}} + \frac{v_{Ai}(m_{A} - m_{B})}{m_{A} + m_{B}}$$

$$v_{Bf} = -\frac{2m_{A}v_{Ai}}{m_{A} + m_{B}} + \frac{v_{Bi}(m_{B} - m_{A})}{m_{A} + m_{B}}$$

Check Your Progress

- 1. Which one of the following is correct
 - a) K.E. = $P^2/2m$
 - b) P/2m
 - c) $P/2m^2$
 - d) $(P/2m)^2$
- 2. For perfectly inelastic collision, value of coefficient for restitution e is
 - a) E=1
 - b) E<1
 - c) E=0

d) E>1

3. If $\mathbf{A} = \hat{\imath} + 2\hat{\jmath} - \hat{k}$ and $\mathbf{B} = -\hat{\imath} - 2\hat{\jmath} - 2\hat{k}$ the value of $\mathbf{A.B}$

A. -2

B. -4

C. 3

D. -3

4. The slope of the K.E versus position for gives the ratio of change of

A. Work

B. Momentum

C. Force

D. power

5. If two masses m₁ and m₂ collide , the ratio of changes in their respective velocity is proportional to

a) m_1/m_2

b)
$$\sqrt{m^2/m^1}$$

c) $m_{2/m1}$

d)
$$\sqrt{m1/m2}$$

Stretch Yourself

- 1. When an air bubble raise in water. What happen to its potential energy
- 2. A body of mass 50 kg has a momentum of 100 kgms⁻¹ calculate its K.E.
- 3. What is meant by zero work? State the condition under which a force does no work give example
- 4. State and explain work energy principles.

5. What is meant by collision?

Answer to Check Yourself

1A) 2C) 3D) 4B) 5 C)