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MOTION OF RIGID BODY

So far you have learnt about the motion of a single object, usually taken as a
point mass. This simplification is quite useful for learning the laws of mechanics.
But in real life, objects consist of very large number of particles. A tiny pebble
contains millions of particles. Do we then write millions of equations, one for
each particle? Or is there a simpler way? While discovering answer to this question
you will learn about centre of mass and moment of inertia, which plays the same
role in rotational motion as does mass in translational motion.

You will also study an important concept of physics, the angular momentum. If
no external force acts on a rotating system, its angular momentum in conserved.
This has very important implications in physics. It enables us to understand how
a swimmer is able to somersault while diving from a diving board into the water
below.

OBJECTIVES

After studying this lesson, you should be able to :

define the centre of mass of a rigid body;

explain why motion of a rigid body is a combination of translational and
rotational motions;

define moment of inertia and  state theorems of parallel and perpendicular
axes;

define torque and find the direction of rotation produced by it;

write the equation of motion of a rigid body;

state the principle of conservation of angular momentum; and

calculate the velocity acquired by a rigid body at the end of its motion on an
inclined plane.
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7.1 RIGID BODY

As mentioned earlier, point masses are ideal constructs, brought in for simplicity
in discussion. In practice, when extended bodies interact with each other and the
distances between them are very large compared to their sizes, their sizes can be
ignored and they may be treated as point masses. Can you give two examples of
such cases where the sizes of the bodies are not important? Sizes of stars are
small as compared to the size of the galaxy. So, stars can be considered as point
masses. Similarly, in the earth-moon system, moon’s size can be ignored. But
when we have to consider the rotation of a body about an axis, the size of the
body becomes important. When we consider the rotation of a system, we generally
assume that during rotation, the distances between its constituent particles remain
fixed. Such a system of particles is called a rigid body.

A rigid body is one in which the separation between the constituent particles
does not change with its motion.

This definition implies that the shape of a rigid body is preserved during its motion.
However, like a point mass, a rigid body is also an idealisation because, if we
apply large forces, the distances between particles do change, may be
infinitesimally. Therefore, in nature there is nothing like a perfectly rigid body.
For most purposes, a solid body is good enough approximation to a rigid body. A
cricket ball, a wooden block, a steel disc, even the earth and the moon could be
considered as rigid bodies in this lesson.

Can water in a bucket be considered a rigid body? Obviously, water  in a bucket
cannot be a rigid body because it changes shape as bucket is pushed around.

You may now like to check what you have understood about a rigid body.

INTEXT QUESTIONS 7.1

1. A frame is made of six wooden rods. The rods are firmly attached to each
other. Can this system be considered a rigid body?

2. Can a heap of sand be considered a rigid body? Explain your answer.

7.2  CENTRE OF MASS (C.M.) OF A RIGID BODY

Before we deal with rigid bodies consisting of several particles, let us consider a
simpler case. Suppose we have a system of two particles having same mass joined
by weightless and inextensible rod. Can we consider this system as a rigid body?

In this system, the distance between the two particles is fixed. So it is a rigid
body.
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Suppose that the two particles are at heights
z

1
 and z

2
 from a horizontal surface (Fig. 7.1).

Suppose further that the gravitational force
is uniform in the small region in which the
two particles move about. The force on each
particle will be mg. The total force acting
on the system is therefore 2mg. We have
now to find a point C somewhere in the
system so that if a force 2mg acts at that
point located at a height z from the horizontal surface, the motion of the system
would be the same as with two forces. The potiential energies of particles 1 and
2 are mgz

1
 and mgz

2
,
 
respectively. The potential energy of the particle at C is

2mgz. Since this must be equal to the combined potential energy of the two
particles, can write

2 mgz = mgz
1
 + mgz

2
(7.1)

or z = 
z z1 2+

2
(7.2)

Note that the point C lies midway between the two particles. If the two masses
were unequal, this point would not have been in the middle. If the mass of particle
1 is m

1
 and that  of particle 2 is m

2
, Eqn. (7.1) modifies to

(m
1
 + m

2
) gz = m

1
gz

1
 + m

2 
gz

2
(7.3)

so that z = 
1 1 2 2

1 2( )

m z m z

m m
+

+ (7.4)

The point C is called the centre of mass (CM) of the system. As such, it is a
mathematical tool and there is no physical point as CM.

To grasp this concept, study the following example  carefully.

Example 7.1 : If in the above case, the mass of one particle is twice that of the
other, let us locate the CM.

Solution :  m
1
= m and m

2
= 2 m, Then Eqn. (7.4) gives

z = 
1 22

( 2 )

m z m z

m m

+
+  = 1 22

3

z z+

When a body consists of several particles, we generalise Eqn (7.4) to define its
CM : If the particle with mass m

1
 has coordinates (x

1
, y

1
, z

1
) with respect to some

coordinate system, mass m
2
 has coordinates (x

2
, y

2
, z

2
) and so on (Fig.7.2), the

coordinates of CM are given by

1

2

C

z1 z2z

Fig. 7.1 : Two particle system
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N

i
i

y

M
=
∑ im

(7.6)

and z = 1

N

i
i

M
=
∑ im z

(7.7)

where 
1

N

i =
∑ im  denotes the sum over all the particles and, therefore, 

1

N

i=
∑ im  is the

total mass of the body, M.

Why should we define CM so precisely?

Recall that the rate of change of displacement is velocity, and the rate of change
of velocity is acceleration. If a

1x
 denotes the component of  acceleration of particle

1 along the x-axis and so on, from Eqn. (7.5), we can write

M a
x

= m
1 
a

1x
 + m

2 
a

2x
 +... (7.8)

where a
x
 is the acceleration of the centre of mass along x-axis. Similar equations

can be written for accelerations along y- and z-axes. These equations can, however,
be combined into a single equation using vector notation :

M a = m
1 
a1 + m

2 
a2 +... (7.9)

But the product of mass and acceleration is force. m
1 
a

1 
is therefore the sum of all

forces acting on particle 1. Similarly, m
2  a2 gives the net force acting on particle

2. The right hand side is, thus, the total force acting on the body.

The forces acting on a body can be of two kinds. Some forces can be due to
sources outside the body. These forces are called the external forces. A familiar
example is the force of gravity. Some other forces arise due to the interaction
among the particles of the body. These are called internal forces. A familiar
example is cohesive force.

y�

m3
m1

m2

m4 m5

x y z1 1 1, ,

x y z2 2 2, ,C°

O

z

x

Fig. 7.2 : C.M. of a body consisting
of  several particles



Notes

 181

Motion of Rigid Body

PHYSICS

MODULE - 1
Motion, Force and Energy

In the case of a rigid body, the sum of the internal forces is zero because they
cancel each other in pairs. Therefore, the acceleration of individual particles of
the body are due to the sum or resultant of the external forces. In the light of this,
we may write Eqn. (7.9) as

M a = F
ext

(7.10)

This shows that the CM of a body moves as though the entire mass of the body
were located at that point and it was acted upon by the sum of all the external
forces acting on the body. Note the simplification introduced in the derivation by
defining the centre of mass. We donot have to deal with millions of individual
particles now, only the centre of mass needs to be located to determine the motion
of the given body. The fact that the motion of the CM is determined by the external
forces and that the internal forces have no role in this at all leads to very interesting
consequences.

You are familiar with the motion of a projectile. Can you recall what path is
traced by a projectile?

The motion is along a parabolic path. Suppose
the projectile is a bomb which explodes in mid air
and breaks up into several fragments. The
explosion is caused by the internal forces. There
is no change in the external force, which is the
force of gravity. The centre of mass of the
projectile, therefore, continues to be  the same
parabola on which the bomb would have moved
if it had not exploded (Fig. 7.3). The fragments
may fly in all directions on different parabolic paths
but the centre of mass of the various fragments will lie on the original parabola.

You might have now understood the  importance of  the concept of centre of
mass of a rigid body. You will encounter
more examples of importance in
subsequent sections. Let us therefore see
how the centre of mass of a system is
obtained by taking a simple example.

Example 7.2 : Suppose four masses, 1.0
kg, 2.0 kg, 3.0 kg and 4.0 kg are located
at the corners of a square of side 1.0 m.
Locate its centre of mass?

Solution : We can always make the square
lie in a plane. Let this plane be the (x,y)
plane. Further, let us assume that one of
the corners coincides with the origin of

Y

O X

Path of
CM

Explosion

Fig. 7.3 : Centre of mass of a
projectile

y

(1.0, 1.0)

(0, 0.7)
C (0.5, 0.7)

(0.5, 0)

(1.0,0)

O x

(0, 0)

m4 (0, 1.0) m3

m2

m1

Fig. 7.4 : Locating CM of four masses
placed at the corners of a square
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the coordinate system and the sides are along the x and y axes. The coordinates of
the four masses are : m

1
 (0,0), m

2
 (1.0,0), m

3
 (1.0,1.0) and m

4
 (0, 1.0), where all

distances are expressed in metres (Fig.7.4).

From Eqns. (7.5) and (7.6), we get

x = 
10 0 2 0 10 30 10 4 0 0

10 2 0 30 4 0

. . . . . .

. . . .

× × × ×+ + +

+ + + m

= 0.5 m

and y = 
10 0 2 0 0 30 10 4 0 10

10 2 0 30 4 0

. . . . . .

. . . .

× × × ×+ + +

+ + + m

= 0.7 m

The CM has coordinates (0.5 m, 0.7 m) and is marked C in Fig.7.4. Note that the
CM is not at the centre of the square although the square is a symmetrical figure.

What could be the reason for the CM not being at the centre? To discover answer
to this question, calculate the coordinates of CM if all masses are equal.

7.2.1 CM of Some Bodies

The position of centre of mass of extended bodies can not be easily calculated
because a very large number of particles constituting the body have to be
considered. The fact that all the particles of a rigid body have same mass and are
uniformly distributed makes things somewhat simpler. If the body is regular in
shape and possesses some symmetry, say it is cylindrical or spherical, the calculation
is a little bit simplified. But even such calculations are beyond the scope of this
course. However, keeping in mind the importance of CM, we give in Table 7.1
the position of CM of some regular, symmetrical bodies.

Table 7.1 Centres of Mass of some regular symmetrical bodies

Figure Position of Centre of Mass

Triangular plate

Point of intersection of the three medians

Regular polygon and circular plate

At the geometrical centre of the figure

Cylinder and sphere

At the geometrical centre of the figure
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Pyramid and cone

On line joining vertex with centre of base
and at  h/4 of the height measured from the
base.

Figure with axial symmetry

Some point on the axis of symmetry

Figure with centre of symmetry

At the centre of symmetry

Two things must be remembered about the centre of mass : (i) It may be outside
the body as in case of a ring.  (ii) When two bodies revolve around each other,
they actually revolve around their common centre of mass. For example, stars in
a binary system revolve around their common centre of mass. The Earth-Sun
system also revolves around its common centre of mass. But since mass of the
Sun is very large as compared to the mass of earth, the centre of mass of the
system is very close to the centre of the Sun.

Now it is time to check your progress.

INTEXT QUESTIONS 7.2

1. The grid shown here has particles A, B,
C, D and E respectively have masses 1.0
kg, 2.0kg, 3.0 kg, 4.0 kg and 5.0 kg.
Calculate the coordinates of the position
of the centre of mass of the system
(Fig. 7.5).

2. If three particles of masses m
1
 =1 kg, m

2
 =

2 kg, and m
3
 = 3 kg are situated at the

corners of an equilateral triangle of side
1.0 m, obtain the position coordinates of
the  centre of mass of the system.

3. Show that the ratio of the distances of the
two particles from their common centre of mass is inversely proportional to
the ratio of their masses.

y

D

C

O
E

A

B

x

Centre
of Mass

Fig. 7.5
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7.3 TRANSLATIONAL AND ROTATIONAL MOTION OF
A RIGID BODY : A COMPARISON

When a rigid body moves in such a way that all its particles move along parallel
paths (Fig.7.6), its motion is called translational motion. Since all the particles
execute identical motion, its centre of mass must also be tracing out an identical
path. Therefore, the translational motion of a body may be characterised by the
motion of its centre of mass. We have seen that this motion is given by Eqn.(7.10):

M a = Fext

Do you now see the advantage of defining the centre of mass of a body? With its
help, the translational motion of body can be described by an equation for a single
particle having mass equal to the mass of the whole body. It is located at the
centre of mass and is acted upon by the sum of all the external forces which are
acting on the rigid body. To understand the concept clearly, perform the following
activities.

ACTIVITY 7.1

Take a wooden block. Make two or three marks on any of its surfaces. Now keep
the marked surface in front of you and push
the block along a horizontal floor. Note the
paths traced by the marks. All these marks
have paths parallel to the floor and, therefore,
parallel to one another (Fig. 7.6). You can
easily see that the lengths of the paths are
also equal.

ACTIVITY 7.2

Let us now perform another simple
experiment. Take a cylindrical piece of wood.
On its plane face make a mark or two. Now
roll  the cylinder slowly on the floor, keeping
the plane face towards you. You would notice
that the mark such as A in Fig. 7.7, has not
only moved parallel to the floor, but has also
performed circular motion. So, the body has
performed both translational and rotational
motion.

Fig. 7.6 : A wooden block moving
along the floor performs

translational motion.

ABA
B

A
B

Fig. 7.7 : Rolling motion of a
cylinder: The point A has not only
moved parallel to the floor but also

performed circular motion
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While the general motion of a rigid body consists of both translation and rotation,
it cannot have translational motion if one point in the body is fixed;  it can then
only rotate. The most convenient point to fix for this purpose is the CM of the
body.

You might have seen a grinding stone (the chakki).
The handle of the stone moves in a circular path.
All the points on the stone also move in circular
paths around an axis passing through the centre of
the stone (Fig.7.8).

The motion of a rigid body in which all its
constituent particles describe concentric circular
paths is known as rotational motion.

We have noted above that translational motion of
a rigid body can be described by an equation similar
to that of a single particle. You are familiar with
such equations. Therefore, in this
lesson we concentrate only on the
rotational motion of a rigid body.
The rotational motion can be
obtained by keeping a point of the
body fixed so that it cannot have
any translational motion. For the
sake of mathematical convenience,
this point is taken to be the CM.
The rotation is then about an axis
passing through the CM. A good example of rotational motion is the earth’s
rotation about its own axis (Fig. 7.9). You have studied in earlier lessons that the
mass of the body plays a very important role.
It determines the acceleration acquired by
the body for a given force. Can we define a
similar quantity for rotational motion also?
Let us find out.

7.3.1 Moment of Inertia

Let C be the centre of mass of a rigid body.
Suppose it rotates about an axis through this
point (Fig.7.10).

Suppose particles of masses m
1
, m

2
, m

3
...are

located at distances r
1
, r

2
, r

3
...from the axis

of rotation and are moving with speeds v
1
,

A B C

Fig. 7.8 : Pure rotation of a
grinding stone

A

A
A

A

A

B
B

B

B

B

Fig. 7.9 : Rotation of the earth

m1

m2
m3

r1

r2r3

Fig. 7.10 : Rotation of a plane
lamina about an axis passing

through its centre of mass
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v
2
, v

3
 respectively. Then particle 1 has kinetic energy (½) m

1
2
1v . Similarly, the

kinetic energy of particle of mass m
2
 is (½) m

2
2
2v . By adding the kinetic energies

of all the particles, we get the total energy of the body. If T denotes the total
kinetic energy of the body, we can write

T = (½) m
1

2
1v  + (½) m

2
2
2v +...

= 
1

2

1

1

2

i

i i
i

m
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠∑ v (7.11)

where 
1

i n

i

=

=
∑ indicates the sum over all the particles of the body.

You have studied in lesson 4 that angular speed (ω) is related to linear speed (v)
through the equation v = r ω. Using this result in Eqn. (7.11), we get

T =
2

1

1
( )

2

i n

i i

i

m r
=

=

⎛ ⎞ ω⎜ ⎟
⎝ ⎠∑ (7.12)

Note that we have not put the subscript i with w because all the particles of a
rigid body have the same angular speed. Eqn. (7.12) can now be rewritten as

T = 
2 21

2

i n

i=1
i im r

=⎛ ⎞ω⎜ ⎟
⎝ ⎠
∑

= 
1

2
 I ω2 (7.13)

The quantity I = 
i
Σ 2

i im r (7.14)

is called the moment of inertia of the body.

Example 7.3 : Four particles of mass m each are located at
the corners of a square of side L. Calculate their moment of
inertia about an-axis passing through the centre of the square
and perpendicular to its plane.

Solution : Simple geometry tells us that the distance of each
particle from the axis of rotation is r =L 2 . Therefore, we
can write

I = 
2 2 2 2m r m r m r m r+ + +

= 4m r2

C

r

L

Fig. 7.11
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= 
2

4
2

L
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

(Since 
2

= L
r ).

22 m L=

It is important to remember that moment of inertia is defined with reference to
an axis of rotation. Therefore, whenever you mention moment of inertia, the axis
of rotation must also be specified. In the present case,  I is the moment of inertia
about an axis passing through the centre of the square  and normal to the plane
containing four perfect masses. (Fig. 7.10) The moment of inertia is  expressed in
kg m2.

The moment of inertia of a rigid body is often written as

I = M K2 (7.15)

where M is the total mass of the body and K is called the radius of gyration of the
body. The radius of gyration is that distance from the axis of rotation where
the whole mass of the body can be assumed to be placed to get the same moment
of inertia which the body actually has. It is important to remember that the
moment of inertia of a body about an axis depends on the distribution of mass
around that axis. If the distribution of mass changes, the moment of inertia will
also change. This can be easily seen from Example 7.3. Suppose we place additional
masses at one pair of opposite corners of amount m each. Then the moment of
inertia of the system about the axis through C and perpendicular to the plane of
square would be

I = 
2 2 2 22 2m r m r m r m r+ + +

= 6m r2

Note that moment of inertia has changed from 2mL2 to 3 mL2.

Table 7.2 Moments of inertia of a few regular and uniform bodies.

Axis

R

L

Axis

R

l

Axis

R1

R 2

I = MR2

I = 
2

2
M R

Hoop about
central axis

Solid cylinder
about cylindrical
axis

Annular cylinder (or
ring) about cylinder
axis

Solid cylinder (or disk)
about a central diameter

I = 
2

M
( 2

1R  + 2
2R )

I = 
2

4
M R

 + 
2 2

12
M l

Axis

R
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Refer to Eqn.(7.13) again and compare it with the equation for kinetic energy of
a body in linear motion. Can you draw any analogy? You will note that in rotational
motion, the role of mass has been taken over by the moment of inertia and the
angular speed has replaced the linear speed.

A. Physical significance of moment of inertia

The physical significance of moment of inertia is that it performs the same role
in rotational motion that the mass does in linear motion.

Just as the mass of a body resists change in its state of linear motion, the moment
of inertia resists a change in its rotational motion. This property of the moment
of inertia has been put to a great practical use. Most machines, which produce
rotational motion have as one of their components a disc which has a very large
moment of inertia. Examples of such machines are the steam engine and the
automobile engine. The disc with a large moment of inertia is called a flywheel.
To understand how a flywheel works, imagine that the driver of the engine wants
to suddenly increase the speed. Because of its large moment of inertia, the flywheel
resists this attempt. It allows only a gradual increase in speed. Similarly, it works
against the attempts to suddenly reduce the speed, and allows only a gradual
decrease in the speed. Thus , the flywheel, with its large moment of inertia, prevents
jerky motion and ensures a smooth ride for the passengers.

Axis

L

Thin rod about
an axis passing
through its
centre and
normal to its
lengthI = 

2

12

M L

Hoop about any
diameter

I = 
22

5
M R

Solid sphere
about any
diameter

I = 
2

2

M R

Thin rod about an axis
passing through one
end and perpendicular
to length

Thin spherical shell
about any diameter

Hoop about any
tangent line

I = 
2

3
M L

I = 
22

3
M R

I = 
23

2
M R

Axis

L

Axis

2R

Axis

2R

Axis Axis

R
1
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We have seen that in rotational motion, angular velocity is analogous to linear
velocity in linear motion. Since angular acceleration (denoted usually by α) is the
rate of change of angular velocity, it must correspond to acceleration in linear
motion.

B. Equations of motion for a uniformly rotating rigid body

Consider a lamina rotating about an axis passing through O and normal to its
plane. If it is rotating with a constant angular velocity ω, as shown, then it will
turn through an angle θ in t seconds such that

θ = ω t 7.16(a)

However, if the lamina is subjected to constant
torque (which is the turning effect of force),  it
will undergo a constant angular acceleration. The
following equations describe its rotational motion:

ω
f

= ω
i
 + α t 7.16(b)

where ω
i
 is initial angular velocity and ω

f
 is final

angular velocity.

Similarly, we can write

θ = ω
i
 t + 

1

2
 α t2 7.16(c)

ω
f
2 = ω

i
2 + 2 α θ 7.16(d)

where θ is angular dispalcement in t seconds.

On a little careful scrutiny, you can recognise the similarity of these equations
with the corresponding equations of kinematics for translatory motion.

Example 7.4 : A wheel of a bicycle is free to rotate about a horizontal axis (Fig.
7.11). It is initially at rest. Imagine a line OP drawn on it. By what angle would
the line OP  move in 2 s if it had a uniform angular acceleration of 2.5 rad s–2.

O

P

Fig. 7.13 : Rotation of bicycle wheel

P

O

�

P�

Fig. 7.12 : Rotation of a lamina
about a fixed nail
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Solution : Angular displacement of line OP is given by

θ = ω
0 
t + (½) α t2

= 0 + (½) × (2.5 rad s–2). × 4 s2

= 5 rad

We have mentioned above that for rotational motion of a rigid body, its CM is
kept fixed. However, it is just a matter of convenience that we keep CM fixed.
But many a time, we consider points other than the CM. That is, a point in the
body which can also be kept fixed and the body rotated about it. But then the axis
of rotation will pass through this fixed point. The moment of inertia about this
axis would be different from the moment of inertia about an axis passing through
the CM. The relation between the two moments of inertia can be obtained using
the theorems of moment of inertia.

7.3.2 Theorems of moment of inertia

There are two theorems which connect moments of
inertia about two axes; one of which is passing through
the CM of the body. These are :

(i) the theorem of parallel axes, and

(ii) the theorem of perpendicular axes.

Let us now learn about these theorems and their
applications.

(i) Theorem of parallel axes

Suppose the given rigid body rotates about an axis passing through any point P
other than the centre of mass. The moment of inertia about this axis can be found
from a knowledge of the moment of inertia about a parallel axis through the
centre of mass. Theorem of parallel axis states that the moment of inertia about
an axis parallel to the axis passing through its centre of mass is equal to the
moment of inertia about its centre of mass plus the product of mass and square
of the perpendicular distance between the parallel axes. If I denotes the required
moment of inertia and I

C
 denotes the moment of inertia about a parallel axis

passing through the CM, then

I = I
C
 + M d 2 (7.17)

where M is the mass of the body and d is the distance between the two axes
(Fig. 7.12). This is known as the theorem of parallel axes.

P

d
C

Fig. 7.14 : Parallel axes
through CM and another

point P
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(ii) Theorem of perpendicular axes

Let us choose three mutually perpendicular axes, two of which, say x and y are in
the plane of the body, and the third, the z–axis, is perpendicular to the plane
(Fig.7.13). The perpendicular axes theorem states that the sum of the moments
of inertia about  x and y axes is equal to the moment of inertia about the z–
axis.

z

O

x

y

Id

Id

90°

I = MR2

Fig. 7.15 : Theorem of perpendicular axes Fig. 7.16 : Moment of inertia of a hoop

That is,

I
z

= I
x
 + I

y
(7.18)

We now illustrate the use of these theorems by the following example.

Let us take a hoop shown in Fig. 7.16. From Table 7.2 you would recall that
moment of inertia of a hoop about an axis passing through its centre and
perpendicular to the base  is M R2, where M is its mass and R is its radius. The
theorem of perpendicular axes tells us that this must be equal to the sum of the
moments of inertia about two diameters which are perpendicular to each other as
well as to the central axis. The symmetry of the hoop tells us that the moment of
inertia about any diameter is the same as about any other diameter. This means
that all the diameters are equivalent and any two perpendicular diameters may
be chosen. Since the moment of inertia about each is the same, say
I

d
, Eqn.(7.18) gives

M R2 = 2 I
d

and therefore
I

d
= (½) MR2

So, the moment of inertia of a hoop about any of its diameter is (½) M R2.

Let us now take a point P on the rim. Consider a tangent to the hoop at this point
which is parallel to the axis of the hoop. The distance between the two axes is
obviously equal to R. The moment of inertia about the tangent can be calculated
using the theorem of parallel axes. It is given by

I
tan

= M R2 + M R2 = 2 M R2.

It must be mentioned that many of the entries in Table 7.2 have been computed
using the theorems of parallel and perpendicular axes.
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7.3.3 Torque and Couple

ACTIVITY 7.3

Have you ever noticed that it is easy to open the door by applying force at a point
far away from the hinges? What happens if you try to open a door by applying
force near the hinges? Carry out this activity a few
times. You would realise that much more effort is
needed to open the door if you apply force near
the hinges than at a point away from the hinges.
Why is it so? Similarly, for turning a screw we use
a spanner with a long handle. What is the purpose
of keeping a long handle? Let us seek answers to
these questions now.

Suppose O is a fixed point in the body and it can
rotate about an axis passing through this point
(Fig.7.17). Let a force of magnitude F be applied
at the point A along the line AB. If AB passes through the point O, the force F
will not be able to rotate the body. The farther is the line AB from O, the greater
is the ability of the force to turn the body about the axis through O. The turning
effect of a force is called torque. Its magnitude is given by

τ = F s = F r sin θ (7.19)

where s is the distance between the axis of rotation and the line along which the
force is applied.

The units of torque are newton-metre, or Nm. The
torque is actually a vector quantity. The vector from
of  Eqn.(7.19) is

τττττ = r ××××× F            (7.20)

which gives both magnitude and direction of the
torque. What is the direction in which the body would
turn? To discover this, we recall the rules of vector
product (refer to lesson 1) : τ is perpendicular to the
plane containing vectors r and F, which is the plane
of paper here (Fig.7.18). If we extend the thumb of
the right hand at right angles to the fingers and curl
the fingers so as to point from r to F through the
smaller angle, the direction in which thumb points is the direction of τττττ.

Fig. 7.17 : Rotation of a body

O

r
S

BA

�F

�
F

r

�O

S

Fig. 7.18 : Right hand
thumb rule
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Apply the above rule and show that the turning effect of the force in Fig. 7.18 is
normal to the plane of paper downwards. This corresponds to clockwise rotation
of the body.

Example 7.5 : Fig.7.19 shows a bicycle pedal. Suppose your foot is at the top
and you are pressing the pedal downwards. (i) What torque do you produce? (ii)
Where should your foot be for generating maximum torque?

F

(a)

F
B

(b)

Fig. 7.19 : A bicycle pedal (a) at the top when τ = 0; (b) when τ is maximum

Solution : (i) When your foot is at the top, the line of action of the force passes
through the centre of the pedal. So, θ = 0, and τ = Fr sinθ = 0.

(ii) To get maximum torque, sinθ must have its maximum value, that is θ must be
90º. This happens when your foot is at position B and you are pressing the pedal
downwards.

If there are several torques acting on a body, the
net torque is the vector sum of all the torques. Do
you see any correspondence between the role of
torque in the rotational motion and the role of force
in the linear motion? Consider two forces of equal
magnitude acting on a body in opposite directions
(Fig.7.20). Assume that the body is free to rotate
about an axis passing through O. The two torques
on the body have magnitudes

τττττ1 = (a + b) F

and τττττ2 = a F.

You can verify that the turning effect of these torques are in the opposite directions.
Therefore, the magnitude of the net turning effect on the body is in the direction
of the larger torque, which in this case is τττττ1 :

τττττ = τττττ1 – τττττ2 = bF (7.21)

We may therefore conclude that two equal and opposite forces having different
lines of action are said to form a couple whose torque is equal to the product
of one of the forces and the perpendicular distance between them.

A

B

F

F

o

a

b

Fig. 7.20 : Two opposite
forces acting on body
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There is another useful expression for torque which clarifies its correspondence
with force in linear motion. Consider a rigid body rotating about an axis passing
through a point O (Fig. 7.21). Obviously, a particle like P is rotating about the
axis in a circle of radius r. If the circular motion is non–uniform, the particle
experiences forces in the radial direction as well as in
the tangential direction. The radial force is the
centripetal force m ω2 r, which keeps the particle in
the circular path. The tangential force is required to
change the magnitude of v, which at every instant is
along the tangent to the circular path. Its magnitude
is m a, where a is the tangential acceleration. The
radial force does not produce any torque. Do you
know why? The tangential force produces a torque of
magnitude m a r. Since a = r α, where α is the angular
acceleration, the magnitude of the torque is m r2 α. If
we consider all the particles of the body, we can write

τ = 
0

=

=
∑
i n

i
m

i
2

ir α =
2

1i
i

m r
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ α

= I α. (7.22)

because α is same for all the particles at a given instant.

The similarity between this equation and F = m a shows that τττττ performs the same
role in rotational motion as F does in linear motion. A list of corresponding
quantities in rotational motion and linear motion is given in Table 7.3. With the
help of this table, you can write any equation for rotational motion if you know
its corresponding equation in linear motion.

Table 7.3 : Corresponding quantities in rotational and translational motions

Translational Motion Rotation about a Fixed Axis

Displacement x Angular displacement θ

Velocity v  = 
dx

dt
Angular velocity ω = 

d

dt

θ

Acceleration a = 
dv

dt
Angular acceleration α = 

d

dt

ω

Mass M Moment of inertia I
Force F = m a Torque τ = I α

Work W = Fz dx Work W = τz dθ

Kinetic energy ½M v2 Kinetic energy (½) I ω2

Power P = Fv Power P = τ ω
Linear momentum M v Angular momentum I ω

A

O
P

r

Fig. 7.21 : A rigid body
rotating   about on axis
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With the help of Eqn.(7.22) we can calculate the angular acceleration produced
in a body by a given torque.

Example 7.6 : A uniform disc of mass 1.0 kg and radius
0.1m can rotate about an axis passing through its centre
and normal to its plane without friction. A massless string
goes round the rim of the disc and a mass of 0.1 kg hangs
at its end (Fig.7.22). Calculate (i) the angular acceleration
of the disc, (ii) the angle through which the disc rotates
in one second, and (iii) the angular velocity of the disc
after one second. Take g = 10 ms–2

Solution :  (i) If R and M denote the radius and mass of
the disc, from  Table 7.2, we recall that its moment of
inertia is given by I = (½) M R2. If F denotes the magnitude
of force (= m g) due to the mass at the end of the string
then τ = F R. Eqn. (7.22) now gives

α  = τ /I = FR/I = 2F/MR

= 

2–2 (0.1kg) (10ms )

(1.0kg) (0.1 m)

× ×
×  = 20 rad s–2.

(ii) For angle θ through which the disc rotates, we use Eqn.(7.16). Since the
initial angular velocity is zero, we have

θ = (½) × 20 × 1.0 = 10 rad

(iii) For the velocity after one second, we have

ω = α t = 20 × 1.0 = 20 rad s–1

Now, you may like to check your progress.Try the following questions.

INTEXT QUESTIONS 7.3

1. Four particles, each of mass m, are fixed at the
corners of a square whose each side is of length
r. Calculate the moment of inertia about an axis
passing through one of the corners and
perpendicular to the plane of the square. Calculate
also the moment of inertia about an axis which is
along one of the sides. Verify your result by using
the theorem of perpendicular axes.

2. Calculate the radius of gyration of a solid sphere if the axis is a tangent to the
sphere. (You may use Table 7.2)

Im

0.1 kg

Fig. 7.22

m r

P

r

Q R

r

m m

Axis
along
the
side

Axis
to the
plane
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7.4 ANGULAR MOMENTUM

From Table 7.3 you may recall that rotational analogue of linear momentum is
angular momentum. To understand its physical significance, we would like you
to do an activity.

ACTIVITY 7.4

If you can get hold of a stool which can rotate without much friction, you can
perform an interesting experiment. Ask a friend to sit on the stool with her arms
folded. Make the stool rotate fast. Measure the speed of rotation. Ask your friend
to stretch her arms and measure the speed again. Do you note any change in the
speed of rotation of the stool? Ask her to fold
her arms once again and observe the change in
the speed of the stool.

Let us try to understand why we expect a change
in the speed of rotation of the stool in two cases
: sitting with folded and stretched  hands. For
this, let us again consider a rigid body rotating
about an axis, say z–axis through a fixed point O
in the body. All the points of the body describe
circular paths about the axis of rotation with the
centres of the paths on the axis and have angular
velocity ω. Consider a particle like P at distance
r

i
 from the axis (Fig. 7.20). Its linear velocity is

v
i
 = r

i
ω and its momentum is therefore m

i
 r

i 
ω. The product of linear momentum

and the distance from the axis is called angular momentum, denoted by L. If
we sum this product for all the particles of the body, we get

L = 
i
∑m

i 
ω r

i 
 r

i  
= 

i
i im rΣ 2

F
HG

I
KJ ω

= I ω (7.23)

Remember that the angular velocity is the same for all the particles and the term
within brackets is the moment of inertia. Like the linear momentum, the angular
momentum is also a vector quantity. Eqn. (7.23) gives only the component of the
vector L along the axis of rotation. It is important to remember that I must refer
to the same axis. The unit of angular momentum is kg m2 s–1

P

O

z

ri

vi

Fig. 7.23 : A rigid body rotating
about an axis through ‘O’
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Recall now that the rate of change of ω is α and I α = τ. Therefore,  the rate of
change of angular momentum is equal to torque.  In vector notation, we write
the equation of motion of a rotating body as

d

dt

L
= τττττ  = I 

d

dt

ω
 = I α (7.24)

7.4.1 Conservation of angular momentum

Eqn. (7.24) shows that if there is no net torque acting on the body,  
d

dt

L
 = 0.

This means that there is no change in angular momentum, i.e. the angular
momentum is constant. This is the principle of conservation of angular
momentum. Along with the conservation of energy and linear momentum, this is
one of the most important principles of physics.

The principle of conservation of angular momentum allows us to answer questions
such as : How the direction of toy umbrella floating in air remains fixed? The
trick is to make it rotate and thereby impart it some angular momentum. Once it
goes in air, there is no torque acting on it. Its angular momentum is then constant.
Since angular momentum is a vector quantity, its constancy implies fixed direction
and magnitude. Thus, the direction of the toy umbrella remains fixed while it is in
air.

In the case of your friend on the rotating stool; when no net torque acts on the
stool, the angular momentum of the stool and the person on it must be conserved.
When the arms are  stretched, she causes the moment of inertia of the system to
increase. Eqn. (7.23) then implies that the angular velocity must decrease. Similarly,
when she folds her arms, the moment of inertia of the system decreases. This
causes the angular velocity to increase. Note that the change is basically caused
by the change in the moment of inertia due to change in distance of particles from
the axis of rotation.

Let us look at a few more examples of conservation of angular momentum.
Suppose we have a spherical ball of mass M and radius R. The ball is set rotating
by applying a torque on it. The torque is then removed. When there is no external
torque, whatever angular momentum the ball has acquired must be conserved.
Since moment of inertia of the ball is (2/5) M R2 (Table 7.2), its angular momentum
is given by

L = 
2

5
M R2ω (7.25)

where ω is its angular velocity. Imagine now that the radius of the ball somehow
decreases. To conserve its angular momentum, ω must increase and the ball must
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rotate faster. This is what really happens to some stars, such as those which
become pulsars (see Box on page 176).

What would happen if the radius of the ball were to increase suddenly?

You can again use Eqn.(7.25) to show that if R increases, ω must decrease to
conserve angular momentum. If instead of radius,
the moment of inertia of the system changes some
how, ω will change again. For an interesting effect
of this kind see Box below

The length of the day is not constant

Scientists have observed very small and irregular
variations in the period of rotation of the earth about
its axis, i.e. the length of the day. One of the causes
that they have identified is weather. Due to changes
in weather, large scale movement in the air of the
earth’s atmosphere takes place. This causes a
change in the mass distribution around the axis of
the earth, resulting in a change in the moment of
inertia of the earth. Since the angular momentum
of the earth L = I ω must be conserved, a change in
I means a change in rotational speed of the earth,
or in the length of the day.

Acrobats, skaters, divers and other sports persons make excellent use of the
principle of conservation of angular momentum to show off their feats. You must
have seen divers jumping off the diving boards during swimming events in national
or international events such as Asian Games, Olympics or National meets. At the
time of jumping, the diver gives herself a slight rotation, by which she acquires
some angular momentum. When she is in air, there is no torque acting on her and
therefore her angular momentum must be conserved. If she folds her body to
decrease her moment of inertia (Fig. 7.24) her rotation must become faster. If she
unfolds her body, her moment of inertia increases and she must rotate slowly. In
this way, by controlling the shape of her body, the diver is able to demonstrate her
feat before entering into pool of water.

Example 7.7 : Shiela stands at the centre of a rotating platform that has frictionless
bearings. She holds a 2.0 kg object in each hand at 1.0 m from the axis of rotation
of the system. The system is initially rotating at 10 rotations per minute. Calculate
a) the initial angular velocity in rad s–1, b) the angular velocity after the objects
are brought to a distance of 0.2 m from the axis of rotation, and (c) change in the
kinetic energy of the system. (d) If the kinetic energy has increased, what is the

Fig. 7.24 : Diver, Sommer
saulting after jumping off the

diving boards.
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cause of this increase? (Assume that the moment of inertia of Shiela and platform
I

SP 
stays constant at 1.0 kg m2.)

Solution : (a) 1 rotation = 2π radian

∴ initial angular velocity ω = 
10 2 radian

60 s

× π
 = 1.05 rad s–1

(b) The key idea here is to use the law of conservation of angular momentum.

The initial moment of inertiaI
i

= I 
SP

+ m 2
ir  + m 2

ir

= 1.0 kg m2 + (2.0 kg) × (1 m2) + (2.0 kg) × (1 m2)

= 5.0 kg m2.

After the objects are brought to a distance of 0.2 m, final moment of inertia.

I
t

= I
SP

 + 2
fmr  + 2

fmr

= 1.0 kg m2 + 2.0 kg × (0.2)2 m2 + 2.0 kg × (0.2)2

m2

= 1.16 kg m2.

Conservation of angular momentum requires that
I

i
ω

i
= I

f
 ω

f

or ω
f

= 
i i

f

I

I

ω

 = 
2 –1

2

(5.0 kg m ) ×1.05 rad s

1.16kg m

= 4.5 rad s–1

Suppose the change in kinetic energy of rotation is ΔE. Then

ΔE = 
1

2
I

f
 ω f

2  – 
1

2
I
i
 ωi

2

= 
1

2
 × 1.16 kg m2 × (4.5)2 (rad s–1)2 – 

1

2
 × 5.0

kg m2 × (1.05)2 (rad s–1)2

= 9.05J

Since final kinetic energy is higher than the initial kinetic energy, there is an increase
in  the kinetic energy of the system.

(d) When Shiela pulls the objects towards the axis, she does work on the system.
This work goes into the system and increases its kinetic energy.
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INTEXT QUESTIONS 7.4

1. A hydrogen molecule consists of two identical atoms, each of mass m and
separated by a fixed distance d. The molecule rotates about an axis which is
halfway between the two atoms, with angular speed ω. Calculate the angular
momentum of the molecule.

2. A uniform circular disc of mass 2.0 kg and radius 20 cm is rotated about one
of its diameters at an angular speed of 10 rad s–1. Calculate its angular
momentum about the axis of rotation.

3. A wheel is rotating at an angular speed ω about its axis which is kept vertical.
Another wheel of the same radius but half the mass, initially at rest, is slipped
on the same axle gently. These two wheels then rotate with a common speed.
Calculate the common angular speed.

4. It is said that the earth was formed from a contracting gas cloud. Suppose
some time in the past, the radius of the earth was 25 times its present radius.
What was then its period of rotation on its own axis?

7.5 SIMULTANEOUS ROTATIONAL AND TRANSLATIONAL
MOTIONS

We have already noted that if a point in a rigid body is not fixed, it can possess
rotational motion as well as translational motion. The general motion of a rigid
body consists of both these motions. Imagine the motion
of an automobile wheel on a plane horizontal surface.
Suppose you are observing the circular face (Fig.7.25). Fix
your attention at a point P and at the centre C of the circular
face. Remember that the centre of mass of the wheel lies at
the centre of its axis and C is the end point of the axis. As it
rolls, you would notice that point P rotates round the point
C. The point C itself gets translated in the direction of
motion. So the wheel has both the rotational and
translational motions. If point C or the centre of mass gets translated with velocity
v

cm
, the kinetic energy of translation is

(KE)
tr

= 
1

2
2
cmM v (7.26)

where M is the mass. And if ω is the angular speed of rotation, the kinetic energy
of rotation is

(KE)
rot

= 
1

2
I ω2 (7.27)

P

C

Fig. 7.25
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where I is the moment of inertia. The total energy of the body due to translation
and rotation is the sum of these two kinetic energies. An interesting case, where
both translational and rotational motion are involved, is the motion of a body on
an inclined plane.

Example 7.8 : Suppose a rigid body has mass M, radius R and moment of inertia
I. It is rolling down an inclined plane of height h (Fig.7.26). At the end of its
journey, it has acquired a linear speed v and an angular speed ω. Assume that the
loss of energy due to friction is small and can be neglected. Obtain the value of v
in terms of h.

M

R

h

Fig. 7.26 : Motion of a rigid body on an inclined plane

Solution : The principle of conservation of energy implies that the sum of the
kinetic energies due to translation and rotation at the foot of the inclined plane
must be equal to the potential energy that the body had at the top of the inclined
plane. Therefore,

1

2
 Mv  2 + ½ I ω2 = M g h (7.28)

If the motion is pure rolling and there is no slipping, we can write v = R ω.
Inserting this expression is Eqn. (7.28), we get

1

2
M v2 + 

1

2
 I 

v 2

2R
= M g h (7.29)

To take a simple example, let the body be a hoop. Table 7.2 shows that its moment
of inertia about its own axis is MR2. Eqn.(7.29) then gives

1

2
M v2 + 

1

2

2 2

2

M R

R

v
= M g h

or v = g h (7.30)

Do you notice any thing interesting in this equation? The linear velocity is
independent of mass and radius of the hoop. Its means that a hoop of any
material and any radius rolls down with the same speed on the inclined plane.
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INTEXT QUESTIONS 7.5

1. A solid sphere rolls down a slope without slipping. What will be its velocity
in terms of the height of the slope?

2. A solid cylinder rolls down an inclined plane without slipping. What fraction
of its kinetic energy is translational? What is the magnitude of its velocity
after falling through a height h?

3. A uniform sphere of mass 2 kg and radius 10cm is released from rest on an
inclined plane which makes an angle of 300 with the horizontal. Deduce its
(a) angular acceleration, (b) linear acceleration along the plane, and (c) kinetic
energy as it travels 2m along the plane.

Secret of Pulsars

An interesting example of the conservation of angular momentum is provided
by pulsating stars. These are called pulsars. These stars send pulses of radiation
of great intensity towards us. The pulses are periodic and the periodicity is
extremely precise. The time periods range between a few milliseconds to a
few seconds. Such short time periods show that the stars are rotating very
fast. Most of the matter of these stars is in the form of neutrons. (The neutrons
and protons are the building blocks of the atomic nuclei.) These stars are also
called neutron stars. These stars represent the last stage in their life. The secret
of their fast rotation is their tiny size. The radius of a typical neutron star is
only 10 km. Compare this with the radius of the Sun, which is about 7 × 105

km. The Sun rotates on its axis with a period of about 25 days. Imagine that
the Sun suddenly shrinks to the size of a neutron star without any change in its
mass. In order to conserve its angular momentum, the Sun will have to rotate
with a period as short as the fraction of a millisecond.

WHAT YOU HAVE LEARNT

A rigid body can have rotational as well as translational motion.

The equation of translational motion far a rigid body may be written in the
same form as for a single particle in terms of the motion of its centre of mass.

If a point in the rigid body is fixed, then it can possess only rotational motion.

The moment of inertia about an axis of rotation is defined as 
i
Σ m ri i

2 .

The moment of inertia plays the same role in rotational motion as does the
mass in linear motion.
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The turning effect of a force F on a rigid body is given by the torque τττττ = r ×××××
F.

Two equal and opposite forces constitute a couple. The magnitude of turning
effect of torque is equal to the product of one of the forces and the
perpendicular distance between the line of action of forces.

The application of an external torque changes the angular momentum of the
body.

When no net torque acts on a body, the angular momentum of the body
remains constant.

When a cylindrical or a spherical body rolls down an inclined plane without
slipping, its speed is independent of its mass and radius.

TERMINAL EXERCISE

1. The weight Mg of a body is shown generally as acting at the centre of mass
of the body. Does this mean that the earth does not attract other particles?

2. Is it possible for the centre of mass of a body to lie outside the body? Give
two examples to justify your answer?

3. In a molecule of carbon monoxide (CO), the nuclei of the two atoms are
1.13 × 10–10m apart. Locate of the centre of mass of the molecule.

4. A grinding wheel of mass 5.0 kg and diameter 0.20 m is rotating with an
angular speed of 100 rad s–1. Calculate its kinetic energy. Through what
distance would it have to be dropped in free fall to acquire this kinetic energy?
(Take g = 10.0 m s–2).

5. A wheel of diameter 1.0 m is rotating about a fixed axis with an initial angular
speed of 2rev s–1. The angular acceleration is 3 rev s–2.

(a) Compute the angular velocity after 2 seconds.

(b) Through what angle would the wheel turned during this time?

(c) What is the tangential velocity of a point on the rim of the wheel at t =
2 s?

(d) What is the centripetal acceleration of a point on the rim of the wheel at
t = 2 s?

6. A wheel rotating at an angular speed of 20 rads–1 is brought to rest by a
constant torque in 4.0 seconds. If the moment of inertia of the wheel about
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the axis of rotation is 0.20 kg m2, calculate the work done by the torque in
the first two seconds.

7. Two wheels are mounted on the same axle. The moment of inertia of  wheel
A is 5 × 10–2  kg m2, and that of wheel B is 0.2 kg m2. Wheel A is set spinning
at 600 rev min–1. while wheel B is stationary. A clutch now acts to join A and
B so that they must spin together.

(a) At what speed will they rotate?

(b) How does the rotational kinetic energy before joining compare with the
kinetic energy after joining?

(c) What torque does the clutch deliver if A makes 10 revolutions during the
operation of the clutch?

8. You are given two identically looking spheres and told that one of them is
hollow. Suggest a method to detect the hollow one.

9. The moment of inertia of a wheel is 1000 kg m2. Its rotation is uniformly
accelerated. At some instant of time, its angular speed is 10 rad s–1. After the
wheel has rotated through an angle of 100 radians, the angular velocity of
the wheel becomes 100 rad s–1. Calculate the torque applied to the wheel and
the change in its kinetic energy.

10. A disc of radius 10 cm and mass 1kg is rotating about its own axis. It is
accelerated uniformly from rest. During the first second it rotates through
2.5 radians. Find the angle rotated during the next second. What is the
magnitude of the torque acting on the disc?

ANSWERS TO INTEXT QUESTIONS

7.1

1. Yes, because the distances between points on the frame cannot change.

2. No. Any disturbance can change the distance between sand particles. So, a
heap of sand cannot be considered a rigid body.

7.2

1. The coordinates of given five masses are A (–1, –1), B (–5, –1), C (6, 3), D
(2, 6) and E (–3, 0) and their masses are 1 kg, 2kg, 3kg, 4kg and 5kg
respectively.

Hence, coordinates of centre of mass of the system are
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x = 
-1 1 – 5 2 6 3 2 4 – 3 5

1 2 3 4 5

× × + × + × ×
+ + + +  = 0

y = 
–1 1 1 2 3 3 4 6 0 5

1 2 3 4 5

× − × + × + × + ×
+ + + +  = 

30

15
 = 2.0

2. Let the three particle system be as shown in the figure here.
Consider axes to be as shown with 2 kg mass at the origin.

x = 
2 0 1 0.5 3 1 3.5

1 2 3 6

× + × + × =
+ +

m = 0.5 m

y = 

3
2 0 1 3 0 32

1 2 3 12

× + × + ×
=

+ +
m

Hence, the co-ordinates of the centre of mass are 
3.5 3

,
6 12

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

3. Let the two particles be along the x-axis and let their x-coordinates be o and
x. The coordinate of CM is

X = 
1 2

1 2

0m m x

m m

× + ×
+  = 

2

1 2

m x

m m+ , Y = 0

X is also the distance of m
1
 from the CM. The distance of m

2
 from CM is

x – X = x – 
2

1 2

m x

m m+  = 
1

1 2

m x

m m+

∴
X

Xx +  = 
2

1

m

m

Thus, the distances from the CM are inversely proportional to their masses.

7.3

1. Moment of inertia of the system about an axis perpendicular to the plane
passing through one of the corners and perpendicular to the plane of the
square,

= m r2 + m (2 r2) + m r2 = 4 m r2

M.I. about the axis along the side = m r2 + m r2 = 2 m r2

Y

2 kg

1 kg

3 kg
X
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Verification : Moment of inertia about the axis QP = m r2 + m r2 + 2 m r2.
Now, according to the theorem of perpendicular axes, MI about SP (2mr2)
+ MI about QP 2 m r2 should be equal to MI about the axis through P and
perpendicular to the plane of the square (4 m r2). Since it is true, the results
are verified.

2. M.I. of solid sphere about an axis tangential to the sphere

= 
2

5
 M R2 +M R2 = 

7

5
 M R2 according to the theorem of parallel axes.

If radius fo gyration is K, then M K2 = 
7

5
 M R2. So,

Radius of gyration K = R
7

5

7.4

1. Angular momentum

L = 
2 2

4 4

⎛ ⎞
+⎜ ⎟

⎝ ⎠

d d
m m ω

L = 
2

2

ωm d

2. Angular momentum about an axis of rotation (diameter).

L = I ω = m 
r2

4
 × ω

as M.I about a diameter = 
2

4

m r

∴ L = 20 kg × 
2 2(0.2)

4

m
× 10 rad s–1 = 0.2 kg m2 s–1.

3. According to conservation of angular momentum

I
1
ω = (I

1
 + I

2
) ω

1

where I
1
 is M.I. of the original wheel and I

2
 that of the other wheel, ω is the

initial angular speed and ω
1
 is the common final angular speed.

m r2 ω = 
2 2

2
⎛ ⎞+⎜ ⎟⎝ ⎠

m
m r r ω

1

ω = 
3

2
ω

1 
⇒ ω

1 
= 

2

3
 ω

4. Let the present period of revolution of earth be T and earlier be T
0
. According

to the conservation of angular momentum.

2

5
M (25 R)2 × 

0

2

T

⎛ ⎞π
⎜ ⎟
⎝ ⎠

= 
2

5
 M R2 × 

2π⎛ ⎞
⎜ ⎟
⎝ ⎠T
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= 
2

5
M R2 × 

2π⎛ ⎞
⎜ ⎟
⎝ ⎠T

It gives, T
0
 = 6.25 T

Thus, period of revolution of earth in the past T
0
 = 6.25 times the present

time period.
7.5

1. Using (I = 
2

5
M R2), Eqn. (7.29) for a solid sphere

1

2
mv2 + 

1

2
I ω2 = m g h

or,
1

2
mv2 + 

1

2
 × 

2

5
m r2 . 

v2

2r
 = m g h

Q  ω = v /r.

It gives v = 
10

.
7

g h

2. For a solid cylinder, I = 
2R

2

m

∴ Total K.E 
1

2
m v2 + 

1

2
I ω2 = 

1

2
m v2 + 

1

2

2R

2

m
.  

v2

2R
 = 

3

4
m v2

Q  ω = v /r

Hence, fraction of translational K.E. = 

2

2

1
2
3
4

m

m

v

v
 = 

2

3

Proceeding as in Q.1 above : v =
4

3
g h

Answers to Terminal Problems

3. At a distance 0.64 Å from carbon atom.

4. 125 J, 2.5 m

5. (a) 16 π rad s–1 (b) 20 π rad (c) 25 m s–1 (d) 1280 m s–2

6. 30 J

7. (a) 4 π rad s–1 (b) E
i
 = 5 E

f
(c) 49 π N m

9. T = 5 × 104 N m, KE = 5 × 106 J

10. 7.5 rad, τ = 5 × 10–2 J


